【題目】已知曲線yx3x2在點P0處的切線l1平行于直線4xy10,且點P0在第三象限.

(1)P0的坐標(biāo);(2)若直線l⊥l1,且l也過切點P0,求直線l的方程.

【答案】(1)(-1,-4);(2)x+4y+17=0.

【解析】試題分析:1)根據(jù)曲線方程求出導(dǎo)函數(shù),因為已知直線4x-y-1=0的斜率為4,根據(jù)切線與已知直線平行得到斜率相等都為4,所以令導(dǎo)函數(shù)等于4得到關(guān)于x的方程,求出方程的解,即為切點P0的橫坐標(biāo),代入曲線方程即可求出切點的縱坐標(biāo),又因為切點在第3象限,進(jìn)而寫出滿足題意的切點的坐標(biāo);
2)由直線l1的斜率為4,根據(jù)兩直線垂直時斜率的乘積為-1,得到直線l的斜率為,又根據(jù)(1)中求得的切點坐標(biāo),寫出直線l的方程即可.

試題解析:

(1)證明:由y=x3+x-2,得y′=3x2+1.

由已知令3x2+1=4,解之得x=±1.

當(dāng)x=1時,y=0;當(dāng)x=-1時,y=-4.

又∵點P0在第三象限,∴切點P0的坐標(biāo)為(-1,-4).

(2)∵直線l⊥l1,l1的斜率為4,∴直線l的斜率.

∵l過切點P0,點P0的坐標(biāo)為(-1,-4),

∴直線l的方程為y+4=- (x+1),即x+4y+17=0.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣4x+a+3,g(x)=mx+5﹣2m
(1)當(dāng)a=﹣3,m=0時,求方程f(x)﹣g(x)=0的解;
(2)若方程f(x)=0在[﹣1,1]上有實數(shù)根,求實數(shù)a的取值范圍;
(3)當(dāng)a=0時,若對任意的x1∈[1,4],總存在x2∈[1,4],使f(x1)=g(x2)成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于在區(qū)間[m,n]上有意義的兩個函數(shù)f(x)與g(x),如果對任意x∈[m,n]均有|f(x)﹣g(x)|≤1,則稱f(x)與g(x)在[m,n]上是接近的;否則稱f(x)與g(x)在[m,n]上是非接近的.現(xiàn)有兩個函數(shù)f1(x)=loga(x﹣3a),與f2(x)=loga (a>0,a≠1),給定區(qū)間[a+2,a+3].
(1)若f1(x)與f1(x)在給定區(qū)間[a+2,a+3]上都有意義,求a的取值范圍;
(2)討論f1(x)與f1(x)在給定區(qū)間[a+2,a+3]上是否是接近的?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(2x+),其中為實數(shù),若 對x∈R恒成立,且 ,則f(x)的單調(diào)遞增區(qū)間是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司研發(fā)出一款新產(chǎn)品,批量生產(chǎn)前先同時在甲、乙兩城市銷售30天進(jìn)行市場調(diào)查.調(diào)查結(jié)果發(fā)現(xiàn):甲城市的日銷售量與天數(shù)的對應(yīng)關(guān)系服從圖所示的函數(shù)關(guān)系;乙城市的日銷售量與天數(shù)的對應(yīng)關(guān)系服從圖所示的函數(shù)關(guān)系;每件產(chǎn)品的銷售利潤與天數(shù)的對應(yīng)關(guān)系服從圖所示的函數(shù)關(guān)系,圖是拋物線的一部分.

)設(shè)該產(chǎn)品的銷售時間為,日銷售量利潤為,求的解析式;

)若在的銷售中,日銷售利潤至少有一天超過萬元,則可以投入批量生產(chǎn),該產(chǎn)品是否可以投入批量生產(chǎn),請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線x2 =1,過點P(2,1)能否作一條直線l,與雙曲線交于A,B兩點,且點P是線段AB的中點?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)某企業(yè)生產(chǎn)的一批產(chǎn)品中有一、二、三等品及次品共四個等級,1件不同等級產(chǎn)品的利潤(單位:元)如表1,從這批產(chǎn)品中隨機(jī)抽取出1件產(chǎn)品,該件產(chǎn)品為不同等級的概率如表2.

等級

一等品

二等品

三等品

次品

等級

一等品

二等品

三等品

次品

利潤

表1 表2

若從這批產(chǎn)品中隨機(jī)抽取出的1件產(chǎn)品的平均利潤(即數(shù)學(xué)期望)為元.

(1) 設(shè)隨機(jī)抽取1件產(chǎn)品的利潤為隨機(jī)變量 ,寫出的分布列并求出的值;

(2) 從這批產(chǎn)品中隨機(jī)取出3件產(chǎn)品,求這3件產(chǎn)品的總利潤不低于17元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查觀眾對某電視劇的喜愛程度,某電視臺在甲乙兩地隨機(jī)抽取了8名觀眾做問卷調(diào)查,得分結(jié)果如圖所示:

(1)計算甲地被抽取的觀眾問卷得分的中位數(shù)和乙地被抽取的觀眾問卷得分的平均數(shù);

(2)用頻率估計概率,若從乙地的所有觀眾中再隨機(jī)抽取4人進(jìn)行問卷調(diào)查,記問卷分?jǐn)?shù)不低于80分的人數(shù)為,求的分布列與期望.

查看答案和解析>>

同步練習(xí)冊答案