分析 利用兩角和的正弦函數(shù)公式化簡函數(shù)解析式,結合x的范圍,求出x+$\frac{π}{6}$的范圍,然后利用正弦函數(shù)的圖象和性質即可求出函數(shù)的值域.
解答 解:∵f(x)=$\sqrt{3}$sinx+cosx=2sin(x+$\frac{π}{6}$),0≤x≤$\frac{π}{2}$,
∴$\frac{π}{6}$≤x+$\frac{π}{6}$≤$\frac{2π}{3}$,可得:$\frac{1}{2}$≤sin(x+$\frac{π}{6}$)≤1,
∴f(x)=2sin(x+$\frac{π}{6}$)∈[1,2],
∴該函數(shù)的值域為:[1,2].
點評 本題考查兩角和與差的三角函數(shù),三角函數(shù)的最值的求法,考查計算能力,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 已知x,y∈R,如果x2+y2≠0,那么x≠0且y≠0 | |
B. | 已知x,y∈R,如果x2+y2≠0,那么x≠0或y≠0 | |
C. | 已知x,y∈R,如果x≠0或y≠0,那么x2+y2≠0 | |
D. | 已知x,y∈R,如果x≠0且y≠0,那么x2+y2≠0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 圓 | B. | 直線 | C. | 橢圓 | D. | 線段 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,-2] | B. | (-∞,0)∪(1,+∞) | C. | [6,+∞) | D. | (-∞,-2]∪[6,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com