14.f(x)=$\sqrt{3}$sinx+cosx,(0≤x≤$\frac{π}{2}$),試求該函數(shù)的值域.

分析 利用兩角和的正弦函數(shù)公式化簡函數(shù)解析式,結合x的范圍,求出x+$\frac{π}{6}$的范圍,然后利用正弦函數(shù)的圖象和性質即可求出函數(shù)的值域.

解答 解:∵f(x)=$\sqrt{3}$sinx+cosx=2sin(x+$\frac{π}{6}$),0≤x≤$\frac{π}{2}$,
∴$\frac{π}{6}$≤x+$\frac{π}{6}$≤$\frac{2π}{3}$,可得:$\frac{1}{2}$≤sin(x+$\frac{π}{6}$)≤1,
∴f(x)=2sin(x+$\frac{π}{6}$)∈[1,2],
∴該函數(shù)的值域為:[1,2].

點評 本題考查兩角和與差的三角函數(shù),三角函數(shù)的最值的求法,考查計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

4.命題“已知x,y∈R,如果x2+y2=0,那么x=0且y=0”的逆否命題是( 。
A.已知x,y∈R,如果x2+y2≠0,那么x≠0且y≠0
B.已知x,y∈R,如果x2+y2≠0,那么x≠0或y≠0
C.已知x,y∈R,如果x≠0或y≠0,那么x2+y2≠0
D.已知x,y∈R,如果x≠0且y≠0,那么x2+y2≠0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.定義在R上的奇函數(shù)f(x),當x>0時,f(x)=x-2
(1)求函數(shù)f(x)的解析式;
(2)求不等式f(x)<2的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.過點A的直線l與拋物線y2=2x有且只有一個公共點,這樣的l的條數(shù)是1或2或3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.$\root{4}{81}$運算的結果是( 。
A.3B.-3C.±3D.以上都不正確

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知兩定點F1(-2,0),F(xiàn)2(2,0),點P是平面上一動點,且|PF1|+|PF2|=4,則點P的軌跡是( 。
A.B.直線C.橢圓D.線段

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知a∈R,i為虛數(shù)單位,若(1+i)(a+i)為純虛數(shù),則a的值等于(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.給出下列四個命題:
①函數(shù)y=|x|與函數(shù)y=($\sqrt{x}$)2表示同一個函數(shù);
②奇函數(shù)的圖象一定通過直角坐標系的原點;
③函數(shù)y=3(x-1)2的圖象可由y=3x2的圖象向右平移1個單位得到;
④y=2|x|的最小值為1
⑤對于函數(shù)f(x),若f(-1)•f(3)<0,則方程f(x)=0在區(qū)間[-1,3]上有一實根;
其中正確命題的序號是③④.(填上所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知等比數(shù)列{an}中,a2=2,則其前三項和S3的取值范圍是(  )
A.(-∞,-2]B.(-∞,0)∪(1,+∞)C.[6,+∞)D.(-∞,-2]∪[6,+∞)

查看答案和解析>>

同步練習冊答案