已知Sn是數(shù)列{an}的前n項(xiàng)和,若Sn=1+nan(n=1,2,3…),則Sn關(guān)于n的表達(dá)式為Sn=   
【答案】分析:Sn=1-nan,Sn=1-n(Sn-Sn-1),整理得(n+1)Sn-nSn-1=1,所以nSn-1-(n-1)Sn-2=1,…,3S2-2S1=1,然后用疊加法進(jìn)行求解.
解答:解:Sn=1-nan
Sn=1-n(Sn-Sn-1),
整理得(n+1)Sn-nSn-1=1,
∴nSn-1-(n-1)Sn-2=1,

3S2-2S1=1,
疊加得
(n+1)Sn-2S1=n-1,
∵S1=a1=1-a1,
,
∴(n+1)Sn=n
Sn=
故答案為:
點(diǎn)評(píng):本題考查數(shù)列的性質(zhì)和應(yīng)用,解題時(shí)要注意疊加法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn是數(shù)列{an}的前n項(xiàng)和,an>0,Sn=
a
2
n
+an
2
,n∈N*
(Ⅰ)求Sn;
(Ⅱ)若數(shù)列{bn}滿足b1=2,bn+1=2an+bn,求bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文科題)
(1)在等比數(shù)列{an }中,a5=162,公比q=3,前n項(xiàng)和Sn=242,求首項(xiàng)a1和項(xiàng)數(shù)n的值.
(2)已知Sn是數(shù)列{an}的前n項(xiàng)和,Sn=2n,求an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn是數(shù)列{an}的前n項(xiàng)和,且有Sn=n2+n,則數(shù)列{an}的通項(xiàng)an=
2n
2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn是數(shù)列{an}的前n項(xiàng)和,Sn=2n-1,則a10=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•崇明縣一模)已知Sn是數(shù)列{an}前n項(xiàng)和,a1=1,an+1=an+2(n∈N*),則
lim
n→∞
nan
Sn
=
2
2

查看答案和解析>>

同步練習(xí)冊(cè)答案