【題目】已知的內(nèi)角,,的對邊分別為,,,且滿足.
(Ⅰ)求角;
(Ⅱ)向量,,若函數(shù)的圖象關(guān)于直線對稱,求角、.
【答案】(I);(II).
【解析】試題分析:
(I)根據(jù)同角的基本關(guān)系可知, 再由正弦定理和余弦定理即可求出,再根據(jù),即可求出角的值;(II)解法一:根據(jù)數(shù)量積公式和恒等變換可知,其中,所以的圖象關(guān)于直線對稱,可得,在根據(jù),即,在由(I)得,可得,由此即可求出結(jié)果.
解法二:同方法一,可得,的圖象關(guān)于直線對稱,可得,即, 然后再同方法一即可求出結(jié)果.
試題解析:
(I)由已知得:,
由正弦定理得:,
由余弦定理可得.
,.
(II)解法一:,
其中,
∵的圖象關(guān)于直線對稱,∴,
∴,
∴,即,
由(I)得,
∴,解得,
∴.
解法二:,
∵的圖象關(guān)于直線對稱,∴,
即,
由(I)得,∴,
解得,
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線在點(diǎn)處的切線的斜率為1.
(1)若函數(shù)f(x)的圖象在上為減函數(shù),求的取值范圍;
(2)當(dāng)時(shí),不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】觀察下列等式
1=1
2+3+4=9
3+4+5+6+7=25
4+5+6+7+8+9+10=49
照此規(guī)律,第個(gè)等式為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】計(jì)劃在某水庫建一座至多安裝臺發(fā)電機(jī)的水電站,過去年的水文資料顯示,水庫年入流量(年入流量:一年內(nèi)上游來水與庫區(qū)降水之和.單位:億立方米)都在40以上,不足的年份有年,不低于且不超過的年份有年,超過的年份有年,將年入流量在以上三段的頻率作為相應(yīng)段的概率,假設(shè)各年的年入流量相互獨(dú)立.
(1)求未來年中,設(shè)表示流量超過的年數(shù),求的分布列及期望;
(2)水電站希望安裝的發(fā)電機(jī)盡可能運(yùn)行,但每年發(fā)電機(jī)最多可運(yùn)行臺數(shù)受年入流量限制,并有如下關(guān)系:
年入流量 | |||
發(fā)電機(jī)最多可運(yùn)行臺數(shù) |
若某臺發(fā)電機(jī)運(yùn)行,則該臺年利潤為萬元,若某臺發(fā)電機(jī)未運(yùn)行,則該臺年虧損萬元,欲使水電站年總利潤的均值達(dá)到最大,應(yīng)安裝發(fā)電機(jī)多少臺?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地政府鑒于某種日常食品價(jià)格增長過快,欲將這種食品價(jià)格控制在適當(dāng)范圍內(nèi),決定對這種食品生產(chǎn)廠家提供政府補(bǔ)貼,設(shè)這種食品的市場價(jià)格為x元/千克,政府補(bǔ)貼為t元/千克,根據(jù)市場調(diào)查,當(dāng)16≤x≤24時(shí),這種食品市場日供應(yīng)量p萬千克與市場日需求量q萬千克近似地滿足關(guān)系:p=2(x+4t-14)(x≥16,t≥0),q=24+8ln (16≤x≤24).當(dāng)p=q時(shí)的市場價(jià)格稱為市場平衡價(jià)格.
(1)將政府補(bǔ)貼表示為市場平衡價(jià)格的函數(shù),并求出函數(shù)的值域.
(2)為使市場平衡價(jià)格不高于每千克20元,政府補(bǔ)貼至少為每千克多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線y=Asin(ωx+φ)(A>0,ω>0)上的一個(gè)最高點(diǎn)的坐標(biāo)為(,),由此點(diǎn)到相鄰最低點(diǎn)間的曲線與x軸交于點(diǎn)(π,0),φ∈(﹣,).
(1)求這條曲線的函數(shù)解析式;
(2)寫出函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗(yàn)員每天從該生產(chǎn)線上隨機(jī)抽取16個(gè)零件,并測量其尺寸(單位:cm).根據(jù)長期生產(chǎn)經(jīng)驗(yàn),可以認(rèn)為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布.
(1)假設(shè)生產(chǎn)狀態(tài)正常,記X表示一天內(nèi)抽取的16個(gè)零件中其尺寸在
之外的零件數(shù),求;
(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在之外的零件,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對當(dāng)天的生產(chǎn)過程進(jìn)行檢查.
下面是檢驗(yàn)員在一天內(nèi)抽取的16個(gè)零件的尺寸:
9.95 | 10.12 | 9.96 | 9.96 | 10.01 | 9.92 | 9.98 | 10.04 |
10.26 | 9.91 | 10.13 | 10.02 | 9.22 | 10.04 | 10.05 | 9.95 |
經(jīng)計(jì)算得, ,其中為抽取的第個(gè)零件的尺寸, .
用樣本平均數(shù)作為的估計(jì)值,用樣本標(biāo)準(zhǔn)差作為的估計(jì)值,利用估計(jì)值判斷是否需對當(dāng)天的生產(chǎn)過程進(jìn)行檢查?剔除之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計(jì)和(精確到0.01).
附:若隨機(jī)變量服從正態(tài)分布,則,
, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】產(chǎn)品的廣告費(fèi)支出x與銷售額y(單位:百萬元)之間有如下對應(yīng)數(shù)據(jù):
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
(1)畫出散點(diǎn)圖.
(2)求回歸方程.
(3)試預(yù)測廣告費(fèi)支出為10百萬元時(shí),銷售額多大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: ()的離心率為,直線: 與以原點(diǎn)為圓心、橢圓的短半軸長為半徑的圓相切.
(1)求橢圓的方程;
(2)過橢圓的左頂點(diǎn)作直線,與圓相交于兩點(diǎn), ,若是鈍角三角形,求直線的斜率的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com