過x軸上動(dòng)點(diǎn)A(a,0)引拋物線y=x2+1的兩條切線AP、AQ,P、Q為切點(diǎn).
(1)若切線AP,AQ的斜率分別為k1和k2,求證:k1•k2為定值,并求出定值;
(2)求證:直線PQ恒過定點(diǎn),并求出定點(diǎn)坐標(biāo);
(3)當(dāng)
S△APO
PQ
最小時(shí),求
AQ
AP
的值.
(1)設(shè)過A(a,0)與拋物線y=x2+1的相切的直線的斜率是k,
則該切線的方程為:y=k(x-a)
y=k(x-a)
y=x2+1
得x2-kx+(ka+1)=0∴△=k2-4(ka+1)=k2-4ak-4=0
則k1,k2都是方程k2-4ak-4=0的解,故k1k2=-4
(2)設(shè)P(x1,y1),Q(x2,y2
由于y'=2x,故切線AP的方程是:y-y1=2x1(x-x1
則-y1=2x1(a-x1)=2x1a-2x12=2x1a-2(y1-1)∴y1=2x1a+2,同理y2=2x2a+2
則直線PQ的方程是y=2ax+2,則直線PQ過定點(diǎn)(0,2)
(3)要使
S△APQ
|
PQ
|
最小,就是使得A到直線PQ的距離最小,而A到直線PQ的距離 d=
2a2+2
4a2+1
=
1
2
(
4a2+1+3
4a2+1
)=
1
2
(
4a2+1
+
3
4a2+1
)≥
3

當(dāng)且僅當(dāng)
4a2+1
=
3
4a2+1
a2=
1
2
時(shí)取等號(hào)設(shè)P(x1,y1),Q(x2,y2
y=2xa+2
y=x1+1
得x2-2ax-1=0,則x1+x2=2a,x1x2=-1,
AQ
AP
=(x1-a)(x2-a)+y1y2=(x1-a)(x2-a)+(2ax1+2)(2ax2+2)
=(1+4a2)x1x2+3a(x1+x2)+a2+4=-(1+4a2)+3a•2a+a2+4=3a2+3=
9
2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知直線l:y=3x+2過拋物線y=ax2(a>0)的焦點(diǎn).
(1)求拋物線方程;
(2)設(shè)拋物線的一條切線l1,若l1l,求切點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)點(diǎn)P在曲線y=x2上,從原點(diǎn)向A(2,4)移動(dòng),如果直線OP,曲線y=x2及直線x=2所圍成的面積分別記為S1、S2
(Ⅰ)當(dāng)S1=S2時(shí),求點(diǎn)P的坐標(biāo);
(Ⅱ)當(dāng)S1+S2有最小值時(shí),求點(diǎn)P的坐標(biāo)和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線x2-y2=a2截直線4x+5y=0的弦長(zhǎng)為
41
,則此雙曲線的實(shí)軸長(zhǎng)為( 。
A.3B.
3
2
C.
12
5
D.
6
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線y=x-2與拋物線y2=4x交于A、B兩點(diǎn),則|AB|的值為( 。
A.2
6
B.4
6
C.2
3
D.4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓C的中心在原點(diǎn)O,焦點(diǎn)在x軸,它的短軸長(zhǎng)為2,過焦點(diǎn)與x軸垂直的直線與橢圓C相交于A,B兩點(diǎn)且|AB|=1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過定點(diǎn)N(1,0)的直線l交橢圓C于C、D兩點(diǎn),交y軸于點(diǎn)P,若
PC
1
CN
,
PD
=λ2
DN
,求證:λ12為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y2=8x與橢圓
x2
a2
+
y2
b2
=1有公共焦點(diǎn)F,且橢圓過點(diǎn)D(-
2
3
).
(1)求橢圓方程;
(2)點(diǎn)A、B是橢圓的上下頂點(diǎn),點(diǎn)C為右頂點(diǎn),記過點(diǎn)A、B、C的圓為⊙M,過點(diǎn)D作⊙M的切線l,求直線l的方程;
(3)過點(diǎn)A作互相垂直的兩條直線分別交橢圓于點(diǎn)P、Q,則直線PQ是否經(jīng)過定點(diǎn),若是,求出該點(diǎn)坐標(biāo),若不經(jīng)過,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
經(jīng)過點(diǎn)A(2,1),離心率為
2
2
.過點(diǎn)B(3,0)的直線l與橢圓C交于不同的兩點(diǎn)M,N.
(Ⅰ)求橢圓C的方程;
(Ⅱ)求
BM
BN
的取值范圍;
(Ⅲ)設(shè)直線AM和直線AN的斜率分別為kAM和kAN,求證:kAM+kAN為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線C上的動(dòng)點(diǎn)P到點(diǎn)(1,0)的距離與到定直線L:x=-1的距離相等,
(1)求曲線C的方程;
(2)直線m過(-2,1),斜率為k,k為何值時(shí),直線m與曲線C只有一個(gè)公共點(diǎn),有兩個(gè)公共點(diǎn);沒有公共點(diǎn)?

查看答案和解析>>

同步練習(xí)冊(cè)答案