【題目】已知點是橢圓上任一點,點到直線的距離為,到點的距離為,且.直線與橢圓交于不同兩點(都在軸上方),且.
(1)求橢圓的方程;
(2)當為橢圓與軸正半軸的交點時,求直線方程;
(3)對于動直線,是否存在一個定點,無論如何變化,直線總經(jīng)過此定點?若存在,求出該定點的坐標;若不存在,請說明理由.
【答案】(1) (2) (3)直線總經(jīng)過定點
【解析】試題分析:(1) 設(shè),用坐標表示條件列出方程化簡整理可得橢圓的標準方程;(2)由(1)可知, ,即可得,由得,寫出直線的方程與橢圓方程聯(lián)立,求出點的坐標,由兩點式求直線的方程即可;(3)由,得,設(shè)直線方程為,與橢圓方程聯(lián)立得,由根與系數(shù)關(guān)系計算得,從而得到直線方程為,從而得到直線過定點.
試題解析: (1)設(shè),則, ,………………1分
∴,化簡,得,∴橢圓的方程為.………………3分
(2), ,∴,………………4分
又∵,∴, .
代入解,得(舍)∴,………………6分
,∴.即直線方程為.………………7分
(3)∵,∴.
設(shè),,直線方程為.代直線方程入,得
.………………9分
∴,,∴=
,
∴,……………11分
∴直線方程為,
∴直線總經(jīng)過定點.………………12分
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,,為,軸上兩個動點,點在直線上,且滿足,.
(1)求點的軌跡方程;
(2)記點的軌跡為曲線,為曲線與正半軸的交點,、為曲線上與不重合的兩點,且直線與直線的斜率之積為,求證直線經(jīng)過一個定點,并求出該定點坐標。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】△ABC在內(nèi)角A、B、C的對邊分別為a,b,c,已知a=bcosC+csinB.
(Ⅰ)求B;
(Ⅱ)若b=2,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《中國好聲音()》是由浙江衛(wèi)視聯(lián)合星空傳媒旗下燦星制作強力打造的大型勵志專業(yè)音樂評論節(jié)目,于2012年7月13日在浙江衛(wèi)視播出.每期節(jié)目有四位導師參加.導師背對歌手,當每位參賽選手演唱完之前有導師為其轉(zhuǎn)身,則該選手可以選擇加入為其轉(zhuǎn)身的導師的團隊中接受指導訓練.已知某期《中國好聲音》中,6位選手唱完后,四位導師為其轉(zhuǎn)身的情況如下表所示:
導師轉(zhuǎn)身人數(shù)(人) | 4 | 3 | 2 | 1 |
獲得相應導師轉(zhuǎn)身的選手人數(shù)(人) | 1 | 2 | 2 | 1 |
現(xiàn)從這6位選手中隨機抽取兩人考查他們演唱完后導師的轉(zhuǎn)身情況.
(1)請列出所有的基本事件;
(2)求兩人中恰好其中一位為其轉(zhuǎn)身的導師不少于3人,而另一人為其轉(zhuǎn)身的導師不多于2人的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動點與點的距離和它到直線:的距離的比是.
(1)求動點的軌跡的方程;
(2)已知定點,若,是軌跡上兩個不同動點,直線,的斜率分別為,,且,試判斷直線的斜率是否為定值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校為了解高一實驗班的數(shù)學成績,采用抽樣調(diào)查的方式,獲取了位學生在第一學期末的數(shù)學成績數(shù)據(jù),樣本統(tǒng)計結(jié)果如下表:
分組 | 頻數(shù) | 頻率 |
合計 |
(1)求的值和實驗班數(shù)學平均分的估計值;
(2)如果用分層抽樣的方法從數(shù)學成績小于分的學生中抽取名學生,再從這名學生中選人,求至少有一個學生的數(shù)學成績是在的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:的離心率為,長半軸長為短軸長的b倍,A,B分別為橢圓C的上、下頂點,點.
求橢圓C的方程;
若直線MA,MB與橢圓C的另一交點分別為P,Q,證明:直線PQ過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知以點P為圓心的圓經(jīng)過點A(-1,0)和B(3,4),線段AB的垂直平分線交圓P于點C和D,且|CD|=.
(1)求直線CD的方程;
(2)求圓P的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com