已知三角形ABC中,點(diǎn)D是BC的中點(diǎn),過(guò)點(diǎn)D的直線分別交直線AB,AC于E、F兩點(diǎn),若數(shù)學(xué)公式=數(shù)學(xué)公式(λ>0),數(shù)學(xué)公式數(shù)學(xué)公式(μ>0),則數(shù)學(xué)公式的最小值是ks5u.


  1. A.
    .9
  2. B.
    數(shù)學(xué)公式
  3. C.
    5
  4. D.
    數(shù)學(xué)公式
D
分析:由已知可得===x=,,從而可得λ,μ的關(guān)系,利用基本不等式可求
解答:由D,E,F(xiàn)三點(diǎn)共線可設(shè)
=(λ>0),(μ>0)
===x
=
∵D為BC的中點(diǎn)


即λ+μ=2
=)(λ+μ)=
當(dāng)且僅當(dāng)時(shí)取等號(hào)
故選D
點(diǎn)評(píng):本題主要考查了基本不等式在求解函數(shù)的最值中的應(yīng)用,解題的關(guān)鍵是根據(jù)已知向量的知識(shí)尋求基本不等式的條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△三角形ABC中,a,b,c分別是三個(gè)內(nèi)角A,B,C的對(duì)邊,設(shè)B=2A,則
ba
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三角形ABC中,a、b、c分別為角A、B、C的對(duì)邊,設(shè)向量
m
=(c-2b,a),
n
=(cosA,cosC)
,且
m
n

(1)求角A的大。
(2)若
AB
AC
=4
,求邊長(zhǎng)a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•南充一模)已知三角形ABC中,點(diǎn)D是BC的中點(diǎn),過(guò)點(diǎn)D的直線分別交直線AB,AC于E、F兩點(diǎn),若
AB
=λ
AE
(λ>0),
AC
AF
(μ>0),則
1
λ
+
4
μ
的最小值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三角形ABC中,A,B,C對(duì)邊分別是a,b,c,若a,b,c,成等比數(shù)列,A=60°,則
bsinB
c
等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三角形ABC中,AB=3,BC=
13
,∠BAC=60
°,則AC的長(zhǎng)為
4
4

查看答案和解析>>

同步練習(xí)冊(cè)答案