若f(x)=ax+b一個(gè)零點(diǎn)2,則g(x)=bx2-ax的零點(diǎn)是( 。
分析:由題意可得2a+b=0,故g(x)=bx2-ax=bx(x+
1
2
),令bx(x+
1
2
)=0,可得函數(shù)的零點(diǎn).
解答:解:∵函數(shù)f(x)=ax+b(a≠0)有一個(gè)零點(diǎn)是2,
∴2a+b=0. 
故g(x)=bx2-ax=bx2+
1
2
bx=bx(x+
1
2
),
令bx(x+
1
2
)=0,可得x=0,或 x=-
1
2

故g(x)=bx2-ax的零點(diǎn)是0和-
1
2
,
故選C.
點(diǎn)評(píng):本題主要考查函數(shù)的零點(diǎn)的定義,得到 2a+b=0,是解題的關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=ax+b-1(0<a≤1)在[0,1]上有零點(diǎn),則b-2a的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=ax+b(a>0),且f(f(x))=4x+1,則f(3)=
19
3
19
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•嘉興二模)設(shè)a,b,c∈R,有下列命題:
①若a>0,則f(x)=ax+b在R上是單調(diào)函數(shù);
②若f(x)=ax+b在R上是單調(diào)函數(shù),則a>0;
③若b2-4ac<0,則 a3+ab+c≠0;
④若a3+ab+c≠0,則b2-4ac<0.
其中,真命題的序號(hào)是
①③
①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:《第1章 集合與函數(shù)概念》2011年單元測(cè)試卷(清水一中)(解析版) 題型:填空題

若f(x)=ax+b(a>0),且f(f(x))=4x+1,則f(3)=   

查看答案和解析>>

同步練習(xí)冊(cè)答案