【題目】2020年春節(jié)期間,全國人民都在抗擊“新型冠狀病毒肺炎”的斗爭中.當時武漢多家醫(yī)院的醫(yī)用防護物資庫存不足,某醫(yī)院甚至面臨斷貨危機,南昌某生產商現(xiàn)有一批庫存的醫(yī)用防護物資,得知消息后,立即決定無償捐贈這批醫(yī)用防護物資,需要用A、B兩輛汽車把物資從南昌緊急運至武漢.已知從南昌到武漢有兩條合適路線選擇,且選擇兩條路線所用的時間互不影響.據(jù)調查統(tǒng)計2000輛汽車,通過這兩條路線從南昌到武漢所用時間的頻數(shù)分布表如下:
所用的時間(單位:小時) | ||||
路線1的頻數(shù) | 200 | 400 | 200 | 200 |
路線2的頻數(shù) | 100 | 400 | 400 | 100 |
假設汽車A只能在約定交貨時間的前5小時出發(fā),汽車B只能在約定交貨時間的前6小時出發(fā)(將頻率視為概率).為最大可能在約定時間送達這批物資,來確定這兩車的路線.
(1)汽車A和汽車B應如何選擇各自的路線.
(2)若路線1、路線2的“一次性費用”分別為3.2萬元、1.6萬元,且每車醫(yī)用物資生產成本為40萬元(其他費用忽略不計),以上費用均由生產商承擔,作為援助金額的一部分.根據(jù)這兩輛車到達時間分別計分,具體規(guī)則如下(已知兩輛車到達時間相互獨立,互不影響):
到達時間與約定時間的差x(單位:小時) | |||
該車得分 | 0 | 1 | 2 |
生產商準備根據(jù)運輸車得分情況給出現(xiàn)金排款,兩車得分和為0,捐款40萬元,兩車得分和每增加1分,捐款增加20萬元,若汽車A、B用(1)中所選的路線運輸物資,記該生產商在此次援助活動中援助總額為Y(萬元),求隨機變量Y的期望值,(援助總額一次性費用生產成本現(xiàn)金捐款總額)
【答案】(1)汽車A選擇路線1,汽車B選擇路線2;(2)138.8.
【解析】
(1)由題目中的頻數(shù)分布表列出頻率分布表,求出汽車在約定交貨時間前5(6)小時出發(fā)選擇路線1、2將物資運往武漢且在約定交貨時間前到達的概率,選擇概率較大的路線;
(2)設表示汽車A選擇路線1時的得分,表示汽車B選擇路線2時的得分,分別求出,的分布列,再求出的分布列,求出,即可求出.
(1)頻率分布表如下:
所用的時間(單位:小時) | ||||
路線1的頻率 | 0.2 | 0.4 | 0.2 | 0.2 |
路線2的頻率 | 0.1 | 0.4 | 0.4 | 0.1 |
設,分別表示汽車在約定交貨時間前5小時出發(fā)選擇路線1、2將物資運往武漢且在約定交貨時間前到達;、分別表示汽車在約定交貨前6小時出發(fā)選擇路線1、2將物資運往武漢且在約定交貨時間前到達;
,,
,,
所以汽車A選擇路線1,汽車B選擇路線2.
(2)設表示汽車A選擇路線1時的得分,表示汽車B選擇路線2時的得分,
,的分布列分別是:
0 | 1 | 2 | ||||
P | 0.6 | 0.2 | 0.2 | |||
0 | 1 | |||||
P | 0.9 | 0.1 | ||||
設則X的分布列如下:
0 | 1 | 2 | 3 | |
0.54 | 0.24 | 0.2 | 0.02 |
,
所以(萬元)
所以援助總額的期望值為138.8.
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,橢圓的參數(shù)方程為(為參數(shù)),以原點為極點, 軸正半軸為極軸建立極坐標系,直線的極坐標方程為.
(1)求經過橢圓右焦點且與直線垂直的直線的極坐標方程;
(2)若為橢圓上任意-點,當點到直線距離最小時,求點的直角坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)①求證:當任意取值時,的圖像始終經過一個定點,并求出該定點坐標;
②若的圖像在該定點處取得極值,求的值;
(2)求證:當時,函數(shù)有唯一零點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的直角坐標方程和直線的普通方程;
(2)若直線與曲線交于、兩點,設,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.若函數(shù)的圖象在點處的切線與的圖象也相切.
(1)求的方程和的值;
(2)設不等式對任意的恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱中,四邊形,均為正方形,且,M為的中點,N為的中點.
(1)求證:平面ABC;
(2)求二面角的正弦值;
(3)設P是棱上一點,若直線PM與平面所成角的正弦值為,求的值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某科研單位到某大學的光電信息科學工程專業(yè)招聘暑期實習生,該專業(yè)一班30名同學全部報名,該科研單位對每個學生的測試是光電實驗,這30名學生測試成績的莖葉圖如圖所示.
(1)求男同學測試成績的平均數(shù)及中位數(shù);
(2)從80分以上的女同學中任意選取3人,求恰有2人成績位于的概率;
(3)若80分及其以上定為優(yōu)秀,80分以下定為合格,作出該班男女同學成績“優(yōu)秀”、“合格”的列聯(lián)表,并判斷是否有90%的把握認為該次測試是否優(yōu)秀與性別有關?
附:
0.15 | 0.10 | 0.05 | 0.01 | |
2.072 | 2.706 | 3.841 | 6.635 |
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線的焦點為,(其中)是上的一點,且.
(1)求拋物線的方程;
(2)已知為拋物線上除頂點之外的任意一點,在點處的切線與軸交于點,過點的直線交拋物線于,兩點,設,,的斜率分別為,,,求證:,,成等比數(shù)列.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com