【題目】已知函數(shù)f(x)=(x﹣2)ex+a(x+2)2(x>0).
(1)若f(x)是(0,+∞)的單調遞增函數(shù),求實數(shù)a的取值范圍;
(2)當 時,求證:函數(shù)f(x)有最小值,并求函數(shù)f(x)最小值的取值范圍.

【答案】
(1)解:f'(x)=ex+(x﹣2)ex+2ax+4a,

∵函數(shù)f(x)在區(qū)間(0,+∞)上單調遞增,∴f'(x)≥0在(0,+∞)上恒成立.

∴ex+(x﹣2)ex+2ax+4a≥0,∴ ,

,

,∴


(2)解:[f'(x)]′=xex+2a>0,

∴y=f'(x)在(0,+∞)上單調遞增又f'(0)=4a﹣1<0,f'(1)=6a>0,

∴存在t∈(0,1)使f'(t)=0

∴x∈(0,t)時,f'(x)<0,x∈(t,+∞)時,f'(x)>0,

當x=t時, 且有f'(t)=et(t﹣1)+2a(t+2)=0,

由(1)知 在t∈(0,+∞)上單調遞減, ,且 ,

∴t∈(0,1).

, ,

∴f(1)<f(t)<f(0),﹣e<f(t)<﹣1,

∴f(x)的最小值的取值范圍是(﹣e,﹣1)


【解析】(1)求出函數(shù)的導數(shù)f'(x)=ex+(x﹣2)ex+2ax+4a,通過f'(x)≥0在(0,+∞)上恒成立.得到 ,構造函數(shù),利用導函數(shù)的單調性以及最值求解即可.(2)通過[f'(x)]′=xex+2a>0,數(shù)碼y=f'(x)在(0,+∞)上單調遞增,利用零點判定定理說明存在t∈(0,1)使f'(t)=0,判斷x=t, ,推出 .即 在t∈(0,+∞)上單調遞減,通過求解函數(shù)的最值,求解f(x)的最小值的取值范圍.
【考點精析】解答此題的關鍵在于理解利用導數(shù)研究函數(shù)的單調性的相關知識,掌握一般的,函數(shù)的單調性與其導數(shù)的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數(shù)在這個區(qū)間單調遞增;(2)如果,那么函數(shù)在這個區(qū)間單調遞減.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在正方體ABCD﹣A1B1C1D1中,E、F分別是BB1 , CD的中點,求證:平面ADE⊥平面A1FD1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),若

(1)求的值,并寫出函數(shù)的最小正周期(不需證明);

(2)是否存在正整數(shù),使得函數(shù)在區(qū)間內恰有個零點?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)= ,若f(a)=f(b)=f(c)=f(d),其中a,b,c,d互不相等,則對于命題p:abcd∈(0,1)和命題q:a+b+c+d∈[e+e﹣1﹣2,e2+e﹣2﹣2)真假的判斷,正確的是( )
A.p假q真
B.p假q假
C.p真q真
D.p真q假

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為正方形,PA⊥底面ABCD,AD=AP,E為棱PD中點.
(1)求證:PD⊥平面ABE;
(2)若F為AB中點, ,試確定λ的值,使二面角P﹣FM﹣B的余弦值為-

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】徐州市為加快新老城區(qū)的融合并進一步緩解交通壓力,現(xiàn)經(jīng)過食品城至新城區(qū)(昆侖大道)和食品城至高速入口(迎賓大道),分別修建地鐵2號線和快速通道,如圖,已知兩條公路夾角為60°,為了便于施工擬在兩條公路之間的區(qū)域內建一混凝土攪拌站P,并分別在兩條公路邊上建兩個中轉站MN (異于點A),要求PMPNMN=2(單位:千米).

(1)

(2)為多大時,使得混凝土攪拌站產(chǎn)生的噪聲對食品城的影響最小(即攪拌站與食品城的距離最遠).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足an+1﹣an=2,a1=﹣5,則|a1|+|a2|+…+|a6|=(
A.9
B.15
C.18
D.30

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(x﹣2)ex+a(x+2)2(x>0).
(1)若f(x)是(0,+∞)的單調遞增函數(shù),求實數(shù)a的取值范圍;
(2)當 時,求證:函數(shù)f(x)有最小值,并求函數(shù)f(x)最小值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中,記函數(shù)的定義域為.

(1)求函數(shù)的定義域;

(2)若函數(shù)的最大值為2,求的值;

(3)若對于內的任意實數(shù),不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案