【題目】已知橢圓C: =1(a>b>0)過點(diǎn)A(﹣ , ),離心率為 ,點(diǎn)F1 , F2分別為其左右焦點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若y2=4x上存在兩個(gè)點(diǎn)M,N,橢圓上有兩個(gè)點(diǎn)P,Q滿足,M,N,F(xiàn)2三點(diǎn)共線,P,Q,F(xiàn)2三點(diǎn)共線,且PQ⊥MN.求四邊形PMQN面積的最小值.

【答案】
(1)解:由題意得: ,a2﹣b2=c2,得b=c,

因?yàn)闄E圓過點(diǎn)A(﹣ , ),

+ =1,

解得c=1,所以a2=2,

所以橢圓C方程為


(2)解:當(dāng)直線MN斜率不存在時(shí),直線PQ的斜率為0,

易得 ,

當(dāng)直線MN斜率存在時(shí),設(shè)直線方程為:y=k(x﹣1)(k≠0)

與y2=4x聯(lián)立得k2x2﹣(2k2+4)x+k2=0,

令M(x1,y1),N(x2,y2),則 ,x1x2=1,

|MN|= .即有

∵PQ⊥MN,∴直線PQ的方程為:y=﹣ (x﹣1),

將直線與橢圓聯(lián)立得,(k2+2)x2﹣4x+2﹣2k2=0,

令P(x3,y3),Q(x4,y4),x3+x4= ,x3x4= ,

由弦長公式|PQ|=

代入計(jì)算可得 ,

∴四邊形PMQN的面積S= |MN||PQ|= ,

令1+k2=t,(t>1),

上式 = ,

所以 .最小值為


【解析】(1)由橢圓的離心率公式和點(diǎn)滿足橢圓方程及a,b,c的關(guān)系,解方程,即可得到橢圓方程;(2)討論直線MN的斜率不存在,求得弦長,求得四邊形的面積;當(dāng)直線MN斜率存在時(shí),設(shè)直線方程為:y=k(x﹣1)(k≠0)聯(lián)立拋物線方程和橢圓方程,運(yùn)用韋達(dá)定理和弦長公式,以及四邊形的面積公式,計(jì)算即可得到最小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓C (ab>0)的離心率為且過點(diǎn)(1,).過橢圓C的左頂點(diǎn)A作直線交橢圓C于另一點(diǎn)P,交直線lxm(ma)于點(diǎn)M.已知點(diǎn)B(1,0),直線PBl于點(diǎn)N

(Ⅰ)求橢圓C的方程;

(Ⅱ)若MB是線段PN的垂直平分線,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的增函數(shù)y=f(x)對(duì)任意x,y∈R都有f(x+y)=f(x)+f(y).
(1)求f(0);
(2)求證:f(x)為奇函數(shù);
(3)若f(k3x)+f(3x﹣9x﹣4)<0對(duì)任意x∈R恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 )經(jīng)過點(diǎn),且兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線構(gòu)成等腰直角三角形.

(1)求橢圓的方程;

(2)動(dòng)直線 )交橢圓、兩點(diǎn),試問:在坐標(biāo)平面上是否存在一個(gè)定點(diǎn),使得以為直徑的圓恒過點(diǎn).若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個(gè)命題:
①定義在R上的函數(shù)f(x)滿足f(﹣2)=f(2),則f(x)不是奇函數(shù)
②定義在R上的函數(shù)f(x)恒滿足f(﹣x)=|f(x)|,則f(x)一定是偶函數(shù)
③一個(gè)函數(shù)的解析式為y=x2 , 它的值域?yàn)閧0,1,4},這樣的不同函數(shù)共有9個(gè)
④設(shè)函數(shù)f(x)=lnx,則對(duì)于定義域中的任意x1 , x2(x1≠x2),恒有 ,
其中為真命題的序號(hào)有(填上所有真命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦距為,且過點(diǎn).

(1)求橢圓的方程;

(2)若不經(jīng)過點(diǎn)的直線交于兩點(diǎn),且直線與直線的斜率之和為,證明:直線的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國家規(guī)定個(gè)人稿費(fèi)納稅辦法是:不超過800元的不納稅;超過800元而不超過4 000元的按超過800元部分的14%納稅;超過4 000元的按全部稿酬的11%納稅.已知某人出版一本書,共納稅420元,這個(gè)人應(yīng)得稿費(fèi)(扣稅前)為(
A.2800元
B.3000元
C.3800元
D.3818元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f′(x)是奇函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(﹣2)=0,當(dāng)x>0時(shí),xf′(x)﹣f(x)>0,則使得f(x)>0成立的x的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某車間20名工人年齡數(shù)據(jù)如下表:

年齡(歲)

19

24

26

30

34

35

40

合計(jì)

工人數(shù)(人)

1

3

3

5

4

3

1

20

(1)求這20名工人年齡的眾數(shù)與平均數(shù);

(2)以十位數(shù)為莖,個(gè)位數(shù)為葉,作出這20名工人年齡的莖葉圖;

(3)從年齡在24和26的工人中隨機(jī)抽取2人,求這2人均是24歲的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案