【題目】在新冠肺炎疫情的影響下,南充高中響應(yīng)“停課不停教,停課不停學(xué)”的號召進(jìn)行線上教學(xué),高二年級的甲乙兩個班中,需根據(jù)某次數(shù)學(xué)測試成績選出某班的5名學(xué)生參加數(shù)學(xué)競賽決賽,已知這次測試他們?nèi)〉玫某煽兊那o葉圖如圖所示,其中甲班5名學(xué)生成績的平均分是83,乙班5名學(xué)生成績的中位數(shù)是86

1)求出x,y的值,且分別求甲乙兩個班中5名學(xué)生成績的方差,并根據(jù)結(jié)

果,你認(rèn)為應(yīng)該選派哪一個班的學(xué)生參加決賽?

2)從成績在85分及以上的學(xué)生中隨機抽取2名.求至少有1名來自甲班的概率.

【答案】1)答案見解析 .(2

【解析】

1)根據(jù)甲平均成績可計算得x的值,根據(jù)乙中位數(shù)可得y的值;由方差公式即可求得兩個班的方差,并根據(jù)平均數(shù)和方差的意義,作出選擇.

2)根據(jù)古典概型概率求法,列舉出所有可能,即可求解.

1)甲班的平均分為,

解得

易知

又乙班的平均分為,

,,

說明甲班同學(xué)成績更加穩(wěn)定,故應(yīng)選甲班參加.

285分及以上甲班有2人,設(shè)為 ;乙班有3人,設(shè)為,

從這5人中抽取2人的選法有:,共10種,

其中甲班至少有1名學(xué)生的選法有7種,

則甲班至少有1名學(xué)生被抽到的概率為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),命題p:函數(shù)內(nèi)單調(diào)遞增;q:函數(shù)僅在處有極值.

1)若命題q是真命題,求a的取值范圍;

2)若命題是真命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C經(jīng)過點,AB是拋物線C上異于點O的不同的兩點,其中O為原點.

1)求拋物線C的方程,并求其焦點坐標(biāo)和準(zhǔn)線方程;

2)若,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓()的左右焦點分別為,為橢圓上位于軸同側(cè)的兩點,的周長為,的最大值為.

(Ⅰ)求橢圓的方程;

(Ⅱ)若,求四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖:在四棱錐中,平面.,.點的交點,點在線段上且.

(1)證明:平面;

(2)求直線與平面所成角的正弦值;

(3)求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物,我國PM2.5標(biāo)準(zhǔn)采用世界衛(wèi)生組織設(shè)定的最寬限值,PM2.5日均值在35微克/立方米以下空氣質(zhì)量為一級;35微克/立方米~75微克/立方米之間空氣質(zhì)量為二級;75微克/立方米及其以上空氣質(zhì)量為超標(biāo).

某試點城市環(huán)保局從該市市區(qū)2016年全年每天的PM2.5監(jiān)測數(shù)據(jù)中隨機抽取6天的數(shù)據(jù)作為樣本,監(jiān)測值莖葉圖(十位為莖,個位為葉)如圖所示,若從這6天的數(shù)據(jù)中隨機抽出2,

(1)求恰有一天空氣質(zhì)量超標(biāo)的概率;

(2)求至多有一天空氣質(zhì)量超標(biāo)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的頂點在原點,焦點在軸正半軸上,點到其準(zhǔn)線的距離等于

)求拋物線的方程;

)如圖,過拋物線的焦點的直線從左到右依次與拋物線及圓交于、、四點,試證明為定值.

)過分別作拋物的切線、,且、交于點,求面積之和的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】把五個標(biāo)號為15的小球全部放入標(biāo)號為14的四個盒子中,并且不許有空盒,那么任意一個小球都不能放入標(biāo)有相同標(biāo)號的盒子中的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

(Ⅰ)當(dāng)時,求曲線在點處的切線方程;

(Ⅱ)若函數(shù)有唯一零點,求的值.

查看答案和解析>>

同步練習(xí)冊答案