【題目】如圖,在正三棱柱中, , , 分別為的中點.

(1)求證: //平面

(2)若中點,求三棱錐的體積.

【答案】(1)見解析(2)

【解析】試題分析:(1)取中點,利用平幾知識可得是平行四邊形,即得,再根據(jù)線面平行判定定理得//平面;(2)利用等體積性質進行轉化: ,最后根據(jù)錐體體積公式求體積

試題解析:(Ⅰ)證明:取中點,連接,因為分別為的中點,所以,且,則是平行四邊形, ,又 ,所以//平面

(Ⅱ)因為的中點,所以, 又中點,所以,則 .

點睛:垂直、平行關系證明中應用轉化與化歸思想的常見類型.

(1)證明線面、面面平行,需轉化為證明線線平行.

(2)證明線面垂直,需轉化為證明線線垂直.

(3)證明線線垂直,需轉化為證明線面垂直.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為了研究某種微生物的生長規(guī)律,需要了解環(huán)境溫度)對該微生物的活性指標的影響,某實驗小組設計了一組實驗,并得到如表的實驗數(shù)據(jù):

環(huán)境溫度

1

2

3

4

5

6

7

活性指標

(Ⅰ)由表中數(shù)據(jù)判斷關于的關系較符合還是,并求關于的回歸方程(取整數(shù));

(Ⅱ)根據(jù)(Ⅰ)中的結果分析:若要求該種微生物的活性指標不能低于,則環(huán)境溫度應不得高于多少

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學名著《續(xù)古摘奇算法》(楊輝)一書中有關于三階幻方的問題:將1,2,3,4,5,6,7,8,9分別填入的方格中,使得每一行,每一列及對角線上的三個數(shù)的和都相等,我們規(guī)定:只要兩個幻方的對應位置(如每行第一列的方格)中的數(shù)字不全相同,就稱為不同的幻方,那么所有不同的三階幻方的個數(shù)是( )

8

3

4

1

5

9

6

7

2

A. 9 B. 8 C. 6 D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中平面,且,

(1)求證:;

(2)在線段上,是否存在一點,使得二面角的大小為45°,如果存在,求與平面所成角的正弦值,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分為14分)已知定義域為R的函數(shù)是奇函數(shù).

1)求ab的值;

2)若對任意的t∈R,不等式ft22t)+f2t2k<0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正四棱錐中, ,側棱與底面所成角的正切值為

(1)若中點,求異面直線所成角的正切值;

(2)求側面與底面所成二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某冷飲店只出售一種飲品,該飲品每一杯的成本價為3元,售價為8元,每天售出的第20杯及之后的飲品半價出售.該店統(tǒng)計了近10天的飲品銷量,如圖所示:設為每天飲品的銷量,為該店每天的利潤.

(1)求關于的表達式;

(2)從日利潤不少于96元的幾天里任選2天,求選出的這2天日利潤都是97元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示, 是某海灣旅游區(qū)的一角,為營造更加優(yōu)美的旅游環(huán)境,旅游區(qū)管委會決定建立面積為平分千米的三角形主題游戲樂園,并在區(qū)域建立水上餐廳.

已知, .

(1)設, ,用表示,并求的最小值;

(2)設為銳角),當最小時,用表示區(qū)域的面積,并求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】重慶市乘坐出租車的收費辦法如下:

不超過3千米的里程收費10;

超過3千米的里程按每千米2元收費(對于其中不足千米的部分,若其小于05千米則不收費,若其大于或等于05千米則按1千米收費);

當車程超過3千米時,另收燃油附加費1元.

相應系統(tǒng)收費的程序框圖如圖所示,其中(單位:千米)為行駛里程,(單位:元)為所收費用,用表示不大于的最大整數(shù),則圖中處應填(

A. B.

C. D.

查看答案和解析>>

同步練習冊答案