已知一個(gè)扇形周長(zhǎng)為4,面積為1,則其中心角等于
 
(弧度)
考點(diǎn):扇形面積公式,弧長(zhǎng)公式
專題:三角函數(shù)的求值
分析:首先,設(shè)扇形的半徑為r,弧長(zhǎng)為 l,然后,建立等式,求解l=2,r=1,最后,求解圓心角即可.
解答: 解:設(shè)扇形的半徑為r,弧長(zhǎng)為 l,則
l+2r=4,S=
1
2
lr=1,
∴l(xiāng)=2,r=1,
α=
l
r
=2,
故答案為:2.
點(diǎn)評(píng):本題重點(diǎn)考查了扇形的周長(zhǎng)公式、扇形的面積公式等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,四棱錐P-ABCD中,AB⊥AD,CD⊥AD,PA⊥底面ABCD,PA=AD=CD=2AB=2,M為PC的中點(diǎn).
(I)求證:BM∥平面PAD;
(Ⅱ)PD⊥平面ABM;
(Ⅲ)求三棱錐A-PBM的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知函數(shù)g(x)=x2+2x+alnx在區(qū)間(0,1)上單調(diào)遞減,求實(shí)數(shù)a的取值范圍.
(2)已知函數(shù)f(x)=ln(ax+1)+
1-x
1+x
(x≥0,a>0)
,求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,且對(duì)任意的n∈N*,都有2Sn=an2+an
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足b1=1,2bn+1-bn=0(n∈N*),且cn=anbn,求數(shù)列{cn}的前n項(xiàng)和Tn;
(3)在(2)的條件下,是否存在整數(shù)m,使得對(duì)任意的正整數(shù)n,都有m-2<Tn<m+2.若存在,求出m的值;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線y=k(x+1)(k>0)與拋物線y2=4x相交于A,B兩點(diǎn),且A,B兩點(diǎn)在拋物線的準(zhǔn)線上的射影分別是M,N,若|BN|=2|AM|,則k的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=x2-2x-4lnx(x>0),則f(x)的單調(diào)遞增區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=
1
2
,求
1+2sin(π-α)cos(-2π-α)
sin2(-α)-sin2(
2
-α)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y∈R,命題p:|x-y|<1,命題q:|x|<|y|+1,則p是q的
 
條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=-x3+x2+tx+t 在(-2,2)上是增函數(shù),求t的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案