【題目】已知函數(shù) .

(1)若存在極值點1,求的值;

(2)若存在兩個不同的零點,求證: 為自然對數(shù)的底數(shù), ).

【答案】(1) ;(2)見解析.

【解析】試題分析:(1)由存在極值點為1,得,可解得a.

2)函數(shù)的零點問題,實質(zhì)是對函數(shù)的單調(diào)性進行討論, 時, 上為增函數(shù)(舍);當時,當時, 增,當時, 為減,又因為存在兩個不同零點,所以,解不等式可得.

試題解析:(1) ,因為存在極值點為1,所以,即,經(jīng)檢驗符合題意,所以.

(2)

時, 恒成立,所以上為增函數(shù),不符合題意;

時,由

時, ,所以為增函數(shù),

時, ,所為增函減數(shù),

所以當時, 取得極小值

又因為存在兩個不同零點,所以,即

整理得,令, , 在定義域內(nèi)單調(diào)遞增, ,由,故成立.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), ,函數(shù)的圖象在點處的切線平行于軸.

(1)求的值;

(2)求函數(shù)的極小值;

(3)設(shè)斜率為的直線與函數(shù)的圖象交于兩點 , ,證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,已知點,曲線的參數(shù)方程為.以原點為極點, 軸正半軸為極軸建立極坐標系,直線的極坐標方程為

(Ⅰ)判斷點與直線的位置關(guān)系并說明理由;

(Ⅱ)設(shè)直線與曲線的兩個交點分別為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

I)若,求函數(shù)的單調(diào)區(qū)間;(其中是自然對數(shù)的底數(shù))

II)設(shè)函數(shù),當時,曲線有兩個交點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+2x+c經(jīng)過點A(0,3),B(﹣1,0),拋物線的頂點為點D,對稱軸與x軸交于點E,連結(jié)BD,則拋物線表達式:BD的長為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的方程為,直線的傾斜角為且經(jīng)過點.

(1)以為極點,軸的正半軸為極軸建立極坐標系,求曲線的極坐標方程;

(2)設(shè)直線與曲線交于兩點,,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且當x≤0時,f(x)=x2+2x.
(1)現(xiàn)已畫出函數(shù)f(x)在y軸左側(cè)的圖像,如圖所示,請補出完整函數(shù)f(x)的圖像,并根據(jù)圖像寫出函數(shù)f(x)的增區(qū)間;
(2)寫出函數(shù)f(x)的解析式和值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=log (x2﹣ax+b). (Ⅰ)若函數(shù)f(x)的定義域為(﹣∞,2)∪(3,+∞),求實數(shù)a,b的值;
(Ⅱ)若f(﹣2)=﹣3且f(x)在(﹣∞,﹣1]上為增函數(shù),求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列四組函數(shù),兩個函數(shù)相同的是(
A.f(x)= ,g(x)=x
B.f(x)=log33x , g(x)=
C.f(x)=( 2 , g(x)=|x|
D.f(x)=x,g(x)=x0

查看答案和解析>>

同步練習冊答案