【題目】已知定義為的函數(shù)滿足下列條件:①對任意的實數(shù)都有:
;②當時,.
(1)求;
(2)求證:在上為增函數(shù);
(3)若,關于的不等式對任意恒成立,求實數(shù)的取值范圍.
【答案】(1);(2)證明見解析;(3).
【解析】
試題分析:(1)令;(2)任取,則,所以是上增函數(shù);(3)由已知條件有:
,又
在上恒成立,令,即成立即可.然后對 取值進行分類討論可得:實數(shù)的取值范圍是.
試題解析:(1)令,恒等式可變?yōu)?/span>,解得
(2)任取,則,由題設時,,可得,
∵,
∴,
所以是上增函數(shù)
(3)由已知條件有:,
故原不等式可化為:,即,
而當時,,
所以,所以,
故不等式可化為,
由(2)可知在上為增函數(shù),所以,
即在上恒成立,
令,即成立即可.
①當,即時,在上單調遞增,
則解得,所以,
②當即時,有
解得,而,所以,
綜上,實數(shù)的取值范圍是
科目:高中數(shù)學 來源: 題型:
【題目】連江一中第49屆田徑運動會提出了“我運動、我陽光、我健康、我快樂”的口號,某同學要設計一張如圖所示的豎向張貼的長方形海報進行宣傳,要求版心面積為162 (版心是指圖中的長方形陰影部分,為長度單位分米),上、下兩邊各空2 ,左、右兩邊各空1 .
(1)若設版心的高為 ,求海報四周空白面積關于的函數(shù) 的解析式;
(2)要使海報四周空白面積最小,版心的高和寬該如何設計?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是偶函數(shù),為實常數(shù).
(1)求的值;
(2)當時,是否存在,使得函數(shù)在區(qū)間上的函數(shù)值組成的集合也是,若存在,求出,的值;否則,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)設是函數(shù)的極值點,求并討論的單調性;
(2)設是函數(shù)的極值點,且恒成立,求的取值范圍(其中常數(shù)滿足).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列滿足 (且), .
(1)求證: 是等比數(shù)列,并求出數(shù)列的通項公式;
(2)對任意的正整數(shù),當時,不等式恒成立,求實數(shù)的取值范圍;
(3)求證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1是四棱錐的直觀圖,其正(主)視圖和側(左)視圖均為直角三角形,俯視圖外框為矩形,相關數(shù)據(jù)如圖2所示.
(1)設中點為,在直線上找一點,使得平面,并說明理由;
(2)若二面角的平面角的余弦值為,求四棱錐的外接球的表面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知曲線的極坐標方程為,以極點為原點, 極軸為軸的正半軸, 建立平面直角坐標系, 直線的參數(shù)方程為為參數(shù)).
(1)判斷直線與曲線的位置關系, 并說明理由;
(2)若直線與曲線相交于兩點, 且,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某汽車美容公司為吸引顧客,推出優(yōu)惠活動:對首次消費的顧客,按元/次收費, 并注冊成為會員, 對會員逐次消費給予相應優(yōu)惠,標準如下:
消費次第 | 第次 | 第次 | 第次 | 第次 | 次 |
收費比例 |
該公司從注冊的會員中, 隨機抽取了位進行統(tǒng)計, 得到統(tǒng)計數(shù)據(jù)如下:
消費次第 | 第次 | 第次 | 第次 | 第次 | 第次 |
頻數(shù) |
假設汽車美容一次, 公司成本為元, 根據(jù)所給數(shù)據(jù), 解答下列問題:
(1)估計該公司一位會員至少消費兩次的概率;
(2)某會員僅消費兩次, 求這兩次消費中, 公司獲得的平均利潤;
(3)以事件發(fā)生的頻率作為相應事件發(fā)生的概率, 設該公司為一位會員服務的平均利潤為元, 求的分布列和數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com