【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P(x0,y0)在曲線y=x2(x>0)上.已知A(0,-1),,n∈N*.記直線APn的斜率為kn.
(1)若k1=2,求P1的坐標(biāo);
(2)若k1為偶數(shù),求證:kn為偶數(shù).
【答案】(1)(1,1)(2)詳見(jiàn)解析
【解析】
試題(1)由兩點(diǎn)間斜率公式得,解方程得P1的坐標(biāo)(2)先求出kn=,再利用k1為偶數(shù)表示x0,設(shè)k1=2p(pN*),則x0=p±.最后利用二項(xiàng)式展開(kāi)定理證明kn為偶數(shù)
試題解析:解:(1)因?yàn)?/span>k1=2,所以,
解得x0=1,y0=1,所以P1的坐標(biāo)為(1,1).
(2)設(shè)k1=2p(pN*),即,
所以-2px0+1=0,所以x0=p±.
因?yàn)?/span>y0=x02,所以kn=
所以當(dāng)x0=p+時(shí),
kn=(p+)n+()n=(p+)n+(p-)n.
同理,當(dāng) x0=p-時(shí),kn=(p+)n+(p-)n.
①當(dāng)n=2m(mN*)時(shí), kn=2,所以kn為偶數(shù).
②當(dāng)n=2m+1(mN)時(shí),kn=2,所以kn為偶數(shù).
綜上, kn為偶數(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)曲線E的方程為1,動(dòng)點(diǎn)A(m,n),B(﹣m,n),C(﹣m,﹣n),D(m,﹣n)在E上,對(duì)于結(jié)論:①四邊形ABCD的面積的最小值為48;②四邊形ABCD外接圓的面積的最小值為25π.下面說(shuō)法正確的是( )
A.①錯(cuò),②對(duì)B.①對(duì),②錯(cuò)C.①②都錯(cuò)D.①②都對(duì)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸的極坐標(biāo)系中,曲線上一點(diǎn)的極坐標(biāo)為,曲線的極坐標(biāo)方程為.
(1)求曲線的極坐標(biāo)方程;
(2)設(shè)點(diǎn)在上,點(diǎn)在上(異于極點(diǎn)),若四點(diǎn)依次在同一條直線上,且成等比數(shù)列,求的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),其中為正實(shí)數(shù).
(1)若不等式恒成立,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,.
(1)求的極值;
(2)若對(duì)任意的,當(dāng)時(shí),恒成立,求實(shí)數(shù)的最大值;
(3)若函數(shù)恰有兩個(gè)不相等的零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率,左、右焦點(diǎn)分別為、,拋物線的焦點(diǎn)恰好是該橢圓的一個(gè)頂點(diǎn).
(1)求橢圓的方程;
(2)已知圓的切線(直線的斜率存在且不為零)與橢圓相交于、兩點(diǎn),那么以為直徑的圓是否經(jīng)過(guò)定點(diǎn)?如果是,求出定點(diǎn)的坐標(biāo);如果不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了保障全國(guó)第四次經(jīng)濟(jì)普查順利進(jìn)行,國(guó)家統(tǒng)計(jì)局從東部選擇江蘇, 從中部選擇河北. 湖北,從西部選擇寧夏, 從直轄市中選擇重慶作為國(guó)家綜合試點(diǎn)地區(qū),然后再逐級(jí)確定普查區(qū)域,直到基層的普查小區(qū).在普查過(guò)程中首先要進(jìn)行宣傳培訓(xùn),然后確定對(duì)象,最后入戶登記. 由于種種情況可能會(huì)導(dǎo)致入戶登記不夠順利,這為正式普查提供了寶貴的試點(diǎn)經(jīng)驗(yàn). 在某普查小區(qū),共有 50 家企事業(yè)單位,150 家個(gè)體經(jīng)營(yíng)戶,普查情況如下表所示:
普查對(duì)象類(lèi)別 | 順利 | 不順利 | 合計(jì) |
企事業(yè)單位 | 40 | 10 | 50 |
個(gè)體經(jīng)營(yíng)戶 | 100 | 50 | 150 |
合計(jì) | 140 | 60 | 200 |
(1)寫(xiě)出選擇 5 個(gè)國(guó)家綜合試點(diǎn)地區(qū)采用的抽樣方法;
(2)根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為“此普查小區(qū)的入戶登記是否順利與普查對(duì)象的類(lèi)別有關(guān)”;
(3)以頻率作為概率, 某普查小組從該小區(qū)隨機(jī)選擇 1 家企事業(yè)單位,3 家個(gè)體經(jīng)營(yíng)戶作為普查對(duì)象,入戶登記順利的對(duì)象數(shù)記為, 寫(xiě)出的分布列,并求的期望值.
附:
0.10 | 0.010 | 0.001 | |
2.706 | 6.635 | 10.88 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐中,底面為菱形,,平面,、分別是、上的中點(diǎn),直線與平面所成角的正弦值為,點(diǎn)在上移動(dòng).
(Ⅰ)證明:無(wú)論點(diǎn)在上如何移動(dòng),都有平面平面;
(Ⅱ)求點(diǎn)恰為的中點(diǎn)時(shí),二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知矩陣,B=
(1) 求AB;
(2) 若曲線C1:在矩陣AB對(duì)應(yīng)的變換作用下得到另一曲線C2,求C2的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com