已知函數(shù)f(x)=x2-(2a+1)x+alnx.
(I)當a=2時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(II)求函數(shù)f(x)的單調區(qū)間.
【答案】
分析:(I)當a=2時,f(x)=x
2-5x+2lnx,由
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185905435110291/SYS201310241859054351102020_DA/0.png)
,知f′(1)=2-5+2=-1,由此能夠求出曲線y=f(x)在點(1,f(1))處的切線方程.
(II)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185905435110291/SYS201310241859054351102020_DA/1.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185905435110291/SYS201310241859054351102020_DA/2.png)
,令f′(x)=0,得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185905435110291/SYS201310241859054351102020_DA/3.png)
.由此進行分類討論,能夠求出結果.
解答:解:(I)當a=2時,f(x)=x
2-(2a+1)x+alnx=x
2-5x+2lnx,
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185905435110291/SYS201310241859054351102020_DA/4.png)
,
∴f′(1)=2-5+2=-1,
∵f(1)=1-5=-4,
∴曲線y=f(x)在點(1,f(1))處的切線方程為:x+y+3=0.
(II)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185905435110291/SYS201310241859054351102020_DA/5.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185905435110291/SYS201310241859054351102020_DA/6.png)
,
令f′(x)=0,得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185905435110291/SYS201310241859054351102020_DA/7.png)
.
①當a
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185905435110291/SYS201310241859054351102020_DA/8.png)
時,由f′(x)>0,得x>a,或
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185905435110291/SYS201310241859054351102020_DA/9.png)
,
f(x)在
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185905435110291/SYS201310241859054351102020_DA/10.png)
,(a,+∞)是單調遞增.
由f′(x)<0,得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185905435110291/SYS201310241859054351102020_DA/11.png)
,
∴f(x)在
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185905435110291/SYS201310241859054351102020_DA/12.png)
上單調遞減.
②當a=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185905435110291/SYS201310241859054351102020_DA/13.png)
時,f′(x)≥0恒成立,
∴f(x)在(0,+∞)上單調遞增.
③當
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185905435110291/SYS201310241859054351102020_DA/14.png)
時,由f′(x)>0,得0<x<a,或x>
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185905435110291/SYS201310241859054351102020_DA/15.png)
,
∴f(x)在(0,a),(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185905435110291/SYS201310241859054351102020_DA/16.png)
)上單調增加,
由f′(x)<0,得a<x<
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185905435110291/SYS201310241859054351102020_DA/17.png)
,
∴f(x)在(a,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185905435110291/SYS201310241859054351102020_DA/18.png)
)上單調遞減.
④當a≤0時,由f′(x)>0,得x>
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185905435110291/SYS201310241859054351102020_DA/19.png)
,
∴f(x)在(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185905435110291/SYS201310241859054351102020_DA/20.png)
,+∞)上單調遞增.
由f′(x)<0,得0<x<
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185905435110291/SYS201310241859054351102020_DA/21.png)
,
∴f(x)在(0,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185905435110291/SYS201310241859054351102020_DA/22.png)
)上單調遞減.
點評:本題考查利用導數(shù)求曲線上某點處的切線方程的應用,解題時要認真審題,仔細解答,注意函數(shù)的單調性的靈活運用.