△ABC的內(nèi)角A,B,C的對邊分別是a,b,c,已知3acosC=2ccosA,tanA=,求B.

135.

解析試題分析:首先利用正弦定理把邊用角的函數(shù)表示出來,然后利用同角三角函數(shù)的基本關(guān)系式求出tanA,tanC的值,最后再利用誘導(dǎo)公式和兩角和的正切公式求解即可.
試題解析:由題設(shè)和正弦定理得,3sinAcosC=2sinCcosA,所以3tanAcosC=2sinC.因?yàn)閠anA=,所以cosC=2sinC.
tanC=.所以tanB=tan[180-(A+C)]=-tan(a+c)==-1,即B=135.
考點(diǎn):1. 正弦定理;2. 誘導(dǎo)公式和兩角和與差的正切公式;3. 同角三角函數(shù)的基本關(guān)系式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

中,角所對的邊為,且滿足,
(1)求角的值;(2)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

中,角所對的邊分別為,且
(1)求角的值;(2)若為銳角三角形,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在△ABC中,∠A,∠B,∠C所對的邊分別是a、b、c,不等式≥0對一切實(shí)數(shù)恒成立.
(1)求cosC的取值范圍;
(2)當(dāng)∠C取最大值,且△ABC的周長為6時(shí),求△ABC面積的最大值,并指出面積取最大值時(shí)△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在△ABC中,角A,B,C的對邊分別為,且A,B,C成等差數(shù)列。
(1)若,求△ABC的面積;
(2)若成等比數(shù)列,試判斷△ABC的形狀。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知中,是三個(gè)內(nèi)角的對邊,關(guān)于的不等式的解集是空集.
(1)求角的最大值;
(2)若,的面積,求當(dāng)角取最大值時(shí),的值.[

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)的內(nèi)角所對邊的長分別是,且,的面積為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

△ABC中,角A,B,C所對的邊分別是,若
⑴求角A;
⑵ 若,求的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(2011•湖北)設(shè)△ABC的內(nèi)角A、B、C所對的邊分別為a、b、c,已知a=1,b=2,cosC=
(1)求△ABC的周長;
(2)求cos(A﹣C)的值.

查看答案和解析>>

同步練習(xí)冊答案