(12分).已知圓C:
直線
(1)證明:不論取何實數(shù),直線與圓C恒相交;
(2)求直線被圓C所截得的弦長最小時直線的方程;
(1)可證明直線L過圓C內(nèi)的定點(3,1)
(2)2X-Y-5=0
【解析】本題考查學(xué)生會求兩直線的交點坐標(biāo),會利用點到圓心的距離與半徑的大小比較來判斷點與圓的位置關(guān)系,靈活運用圓的垂徑定理解決實際問題,掌握兩直線垂直時斜率的關(guān)系,會根據(jù)斜率與一點坐標(biāo)寫出直線的方程,是一道綜合題.
(1)要證直線l無論m取何實數(shù)與圓C恒相交,即要證直線l橫過過圓C內(nèi)一點,方法是把直線l的方程改寫成m(2x+y-7)+x+y-4=0可知,直線l一定經(jīng)過直線2x+y-7=0和x+y-4=0的交點,聯(lián)立兩條直線的方程即可求出交點A的坐標(biāo),然后利用兩點間的距離公式求出AC之間的距離d,判斷d小于半徑5,得證;
(2)根據(jù)圓的對稱性可得過點A最長的弦是直徑,最短的弦是過A垂直于直徑的弦,所以連接AC,過A作AC的垂線,此時的直線與圓C相交于B、D,弦BD為最短的弦,接下來求BD的長,根據(jù)垂徑定理可得A是BD的中點,利用(1)圓心C到BD的距離其實就是|AC|的長和圓的半徑|BC|的長,根據(jù)勾股定理可求出12
|BD|的長,求得|BD|的長即為最短弦的長;根據(jù)點A和點C的坐標(biāo)求出直線AC的斜率,然后根據(jù)兩直線垂直時斜率乘積為-1求出直線BD的斜率,又直線BD過A(3,1),根據(jù)斜率與A點坐標(biāo)即可寫出直線l的方程.
科目:高中數(shù)學(xué) 來源: 題型:
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
3 |
2 |
17 |
4 |
3 |
2 |
17 |
4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com