【題目】設(shè)函數(shù)f(x)=2x3+3ax2+3bx+8c在x=1及x=2時取得極值. (Ⅰ)求a、b的值;
(Ⅱ)若對任意的x∈[0,3],都有f(x)<c2成立,求c的取值范圍.
【答案】解:(Ⅰ)f'(x)=6x2+6ax+3b, 因為函數(shù)f(x)在x=1及x=2取得極值,則有f'(1)=0,f'(2)=0.
即
解得a=﹣3,b=4.
(Ⅱ)由(Ⅰ)可知,f(x)=2x3﹣9x2+12x+8c,f'(x)=6x2﹣18x+12=6(x﹣1)(x﹣2).
當x∈(0,1)時,f'(x)>0;
當x∈(1,2)時,f'(x)<0;
當x∈(2,3)時,f'(x)>0.
所以,當x=1時,f(x)取得極大值f(1)=5+8c,又f(0)=8c,f(3)=9+8c.
則當x∈[0,3]時,f(x)的最大值為f(3)=9+8c.
因為對于任意的x∈[0,3],有f(x)<c2恒成立,
所以9+8c<c2 ,
解得c<﹣1或c>9,
因此c的取值范圍為(﹣∞,﹣1)∪(9,+∞).
【解析】(1)依題意有,f'(1)=0,f'(2)=0.求解即可.(2)若對任意的x∈[0,3],都有f(x)<c2成立f(x)max<c2在區(qū)間[0,3]上成立,根據(jù)導數(shù)求出函數(shù)在[0,3]上的最大值,進一步求c的取值范圍.
【考點精析】通過靈活運用函數(shù)的極值與導數(shù)和函數(shù)的最大(小)值與導數(shù),掌握求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值;求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值即可以解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】某倉庫為了保持庫內(nèi)的濕度和溫度,四周墻上均裝有如圖所示的自動通風設(shè)施.該設(shè)施的下部ABCD是矩形,其中AB=2米,BC=0.5米.上部CmD是個半圓,固定點E為CD的中點.△EMN是由電腦控制其形狀變化的三角通風窗(陰影部分均不通風),MN是可以沿設(shè)施邊框上下滑動且始終保持和AB平行的伸縮橫桿(MN和AB、DC不重合).
(1)當MN和AB之間的距離為1米時,求此時三角通風窗EMN的通風面積;
(2)設(shè)MN與AB之間的距離為x米,試將三角通風窗EMN的通風面積S(平方米)表示成關(guān)于x的函數(shù)S=f(x);
(3)當MN與AB之間的距離為多少米時,三角通風窗EMN的通風面積最大?并求出這個最大面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)F(x)= t(t﹣4)dt在[﹣1,5]上( )
A.有最大值0,無最小值
B.有最大值0,最小值
C.有最小值 ,無最大值
D.既無最大值也無最小值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某倉庫為了保持庫內(nèi)的濕度和溫度,四周墻上均裝有如圖所示的自動通風設(shè)施.該設(shè)施的下部ABCD是矩形,其中AB=2米,BC=0.5米.上部CmD是個半圓,固定點E為CD的中點.△EMN是由電腦控制其形狀變化的三角通風窗(陰影部分均不通風),MN是可以沿設(shè)施邊框上下滑動且始終保持和AB平行的伸縮橫桿(MN和AB、DC不重合).
(1)當MN和AB之間的距離為1米時,求此時三角通風窗EMN的通風面積;
(2)設(shè)MN與AB之間的距離為x米,試將三角通風窗EMN的通風面積S(平方米)表示成關(guān)于x的函數(shù)S=f(x);
(3)當MN與AB之間的距離為多少米時,三角通風窗EMN的通風面積最大?并求出這個最大面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),當x<0時,f′(x)g(x)+f(x)g′(x)<0且f(﹣1)=0則不等式f(x)g(x)<0的解集為( )
A.(﹣1,0)∪(1,+∞)
B.(﹣1,0)∪(0,1)
C.(﹣∞,﹣1)∪(1,+∞)
D.(﹣∞,﹣1)∪(0,1)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將正方形ABCD沿對角線BD折成直二面角A﹣BD﹣C,有如下四個結(jié)論:
(1)AC⊥BD;
(2)△ACD是等邊三角形
(3)AB與平面BCD所成的角為60°;
(4)AB與CD所成的角為60°.
則正確結(jié)論的序號為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】靖國神社是日本軍國主義的象征.中國人民珍愛和平,所以要堅決反對日本軍國主義. 2013年12月26日日本首相安倍晉三悍然參拜靖國神社,此舉在世界各國激起輿論的批評.某報的環(huán)球輿情調(diào)查中心對中國大陸七個代表性城市的1000個普通民眾展開民意調(diào)查. 某城市調(diào)查體統(tǒng)計結(jié)果如下表:
性別 中國政府是否 需要在釣魚島和其他爭議 問題上持續(xù)對日強硬 | 男 | 女 |
需要 | 50 | 250 |
不需要 | 100 | 150 |
(1) 試估計這七個代表性城市的普通民眾中,認為 “中國政府需要在釣魚島和其他爭議問題上持續(xù)對日強硬” 的民眾所占比例;
(2) 能否有以上的把握認為這七個代表性城市的普通民眾的民意與性別有關(guān)?
(3) 從被調(diào)查認為“中國政府需要在釣魚島和其他爭議問題上持續(xù)對日強硬” 的民眾中,采用分層抽樣的方式抽取6人做進一步的問卷調(diào)查,然后在這6人中用簡單隨機抽樣方法抽取2人進行電視專訪,記被抽到的2人中女性的人數(shù)為,求的分布列.
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在等比數(shù)列{an}中,an>0(n∈N*),a1a3=4,且a3+1是a2和a4的等差中項,
若bn=log2an+1.
(1)求數(shù)列{bn}的通項公式;
(2)若數(shù)列{cn}滿足cn=an+1+,求數(shù)列{cn}的前n項和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com