【題目】分形幾何學(xué)是一門以不規(guī)則幾何形態(tài)為研究對象的幾何學(xué).分形的外表結(jié)構(gòu)極為復(fù)雜,但其內(nèi)部卻是有規(guī)律可尋的.一個數(shù)學(xué)意義上分形的生成是基于一個不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).下面我們用分形的方法來得到一系列圖形,如圖1,線段的長度為a,在線段上取兩個點,,使得,以為一邊在線段的上方做一個正六邊形,然后去掉線段,得到圖2中的圖形;對圖2中的最上方的線段作相同的操作,得到圖3中的圖形;依此類推,我們就得到了以下一系列圖形:
記第個圖形(圖1為第1個圖形)中的所有線段長的和為,現(xiàn)給出有關(guān)數(shù)列的四個命題:
①數(shù)列是等比數(shù)列;
②數(shù)列是遞增數(shù)列;
③存在最小的正數(shù),使得對任意的正整數(shù) ,都有 ;
④存在最大的正數(shù),使得對任意的正整數(shù),都有.
其中真命題的序號是________________(請寫出所有真命題的序號).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: (a>b>0)的兩個焦點分別為F1(﹣1,0),F(xiàn)2(1,0),且橢圓C經(jīng)過點 .
(1)求橢圓C的離心率:
(2)設(shè)過點A(0,2)的直線l與橢圓C交于M,N兩點,點Q是線段MN上的點,且 ,求點Q的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在邊長為1的正六邊形ABCDEF中,記以A為起點,其余頂點為終點的向量分別為 、 、 、 、 ;以D為起點,其余頂點為終點的向量分別為 、 、 、 、 .若m、M分別為( + + )( + + )的最小值、最大值,其中{i,j,k}{1,2,3,4,5},{r,s,t}{1,2,3,4,5},則m、M滿足( )
A.m=0,M>0
B.m<0,M>0
C.m<0,M=0
D.m<0,M<0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方體ABCD﹣A′B′C′D′中,AB=2,AD=1,AA′=1.證明直線BC′平行于平面D′AC,并求直線BC′到平面D′AC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定常數(shù)c>0,定義函數(shù)f(x)=2|x+c+4|﹣|x+c|.數(shù)列a1 , a2 , a3 , …滿足an+1=f(an),n∈N* .
(1)若a1=﹣c﹣2,求a2及a3;
(2)求證:對任意n∈N* , an+1﹣an≥c;
(3)是否存在a1 , 使得a1 , a2 , …,an , …成等差數(shù)列?若存在,求出所有這樣的a1;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中錯誤的是( )
A. 平面內(nèi)一個三角形各邊所在的直線都與另一個平面平行,則這兩個平面平行;
B. 若兩個平面平行,則分別位于這兩個平面的直線也互相平行;
C. 平行于同一個平面的兩個平面平行;
D. 若兩個平面平行,則其中一個平面內(nèi)的直線平行于另一個平面;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在三棱錐P﹣ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F(xiàn)分別是AQ,BQ,AP,BP的中點,AQ=2BD,PD與EQ交于點G,PC與FQ交于點H,連接GH.
(1)求證:AB∥GH;
(2)求二面角D﹣GH﹣E的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com