【題目】某研究所計(jì)劃利用“神七”宇宙飛船進(jìn)行新產(chǎn)品搭載實(shí)驗(yàn),計(jì)劃搭載新產(chǎn)品A、B,要根據(jù)該產(chǎn)品的研制成本、產(chǎn)品重量、搭載實(shí)驗(yàn)費(fèi)用和預(yù)計(jì)產(chǎn)生收益來(lái)決定具體安排,通過(guò)調(diào)查,有關(guān)數(shù)據(jù)如表:

產(chǎn)品A(件)

產(chǎn)品B(件)

研制成本、搭載費(fèi)用之和(萬(wàn)元)

20

30

計(jì)劃最大資金額300萬(wàn)元

產(chǎn)品重量(千克)

10

5

最大搭載重量110千克

預(yù)計(jì)收益(萬(wàn)元)

80

60

試問(wèn):如何安排這兩種產(chǎn)品的件數(shù)進(jìn)行搭載,才能使總預(yù)計(jì)收益達(dá)到最大,最大收益是多少?

【答案】解:設(shè)搭載產(chǎn)品Ax件,產(chǎn)品By件,
預(yù)計(jì)總收益z=80x+60y.
,作出可行域,如圖.
作出直線l0:4x+3y=0并平移,由圖象得,當(dāng)直線經(jīng)過(guò)M點(diǎn)時(shí)z能取得最大值,
解得 ,即M(9,4).
所以zmax=80×9+60×4=960(萬(wàn)元).
答:搭載產(chǎn)品A9件,產(chǎn)品B4件,可使得總預(yù)計(jì)收益最大,為960萬(wàn)元.

【解析】我們可以設(shè)搭載的產(chǎn)品中A有x件,產(chǎn)品B有y件,我們不難得到關(guān)于x,y的不等式組,即約束條件和目標(biāo)函數(shù),然后根據(jù)線行規(guī)劃的方法不難得到結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線與橢圓交于兩點(diǎn),與軸交于點(diǎn), 為弦的中點(diǎn),直線分別與直線和直線交于兩點(diǎn).

(1)求直線的斜率和直線的斜率之積;

(2)分別記的面積為,是否存在正數(shù),使得若存在,求出的取值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】三棱錐P﹣ABC中,已知PA=PB=PC=AC=4,BC= AB=2 ,O為AC中點(diǎn).

(1)求證:PO⊥平面ABC;
(2)求異面直線AB與PC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)f(x)=x2+mx+n(m、n∈R)的兩個(gè)零點(diǎn)分別在(0,1)與(1,2)內(nèi),則(m+1)2+(n﹣2)2的取值范圍是(
A.
B.
C.[2,5]
D.(2,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)是定義在[﹣1,1]上的奇函數(shù),且對(duì)任意a、b∈[﹣1,1],當(dāng)a+b≠0時(shí),都有 >0.
(1)若a>b,比較f(a)與f(b)的大;
(2)解不等式f(x﹣ )<f(x﹣ );
(3)記P={x|y=f(x﹣c)},Q={x|y=f(x﹣c2)},且P∩Q=,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若對(duì)任意的x∈[﹣1,2],都有x2﹣2x+a≤0(a為常數(shù)),則a的取值范圍是(
A.(﹣∞,﹣3]
B.(﹣∞,0]
C.[1,+∞)
D.(﹣∞,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= (m,n為常數(shù))是定義在[﹣1,1]上的奇函數(shù),且f(﹣1)=﹣
(1)求函數(shù)f(x)的解析式;
(2)解關(guān)于x的不等式f(2x﹣1)<﹣f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四棱柱ABCD﹣A1B1C1D1中,底面ABCD是邊長(zhǎng)為3的正方形,側(cè)棱AA1長(zhǎng)為4,且AA1與A1B1 , A1D1的夾角都是60°,則AC1的長(zhǎng)等于(

A.10
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|lgx|.若a≠b且,f(a)=f(b),則a+b的取值范圍是(
A.(1,+∞)
B.[1,+∞)
C.(2,+∞)
D.[2,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案