【題目】在平面直角坐標(biāo)系中,已知曲線上的動(dòng)點(diǎn)到點(diǎn)的距離與到直線的距離相等.

1)求曲線的軌跡方程;

2)過點(diǎn)分別作射線、交曲線于不同的兩點(diǎn)、,且.試探究直線是否過定點(diǎn)?如果是,請(qǐng)求出該定點(diǎn);如果不是,請(qǐng)說明理由.

【答案】(1) (2) 直線過定點(diǎn)

【解析】

1)根據(jù)題意得到,化簡(jiǎn)得到答案.

2)設(shè)直線的方程為,聯(lián)立方程利用韋達(dá)定理得到,,根據(jù)得到,故代入方程得到答案.

1)設(shè),依題意,即,

化簡(jiǎn)得,∴曲線的軌跡方程為

2)直線經(jīng)過定點(diǎn)

證明:如圖,依題意,直線斜率不能為0,所以設(shè)直線的方程為

聯(lián)立 ①,

設(shè),則,

,∴,即,

,,∴,

,

依題意,直線不經(jīng)過,∴,

所以,.此時(shí)代入①式恒成立.

而當(dāng)時(shí),直線方程為,即,

即直線過定點(diǎn)

綜上,直線過定點(diǎn)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】嫦娥四號(hào)月球探測(cè)器于2018年12月8日搭載長(zhǎng)征三號(hào)乙運(yùn)載火箭在西昌衛(wèi)星發(fā)射中心發(fā)射.12日下午4點(diǎn)43分左右,嫦娥四號(hào)順利進(jìn)入了以月球球心為一個(gè)焦點(diǎn)的橢圓形軌道,如圖中軌道③所示,其近月點(diǎn)與月球表面距離為公里,遠(yuǎn)月點(diǎn)與月球表面距離為公里.已知月球的直徑為公里,則該橢圓形軌道的離心率約為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐ABCD中,都是等邊三角形,平面PAD平面ABCD,且,

1)求證:CDPA

2E,F分別是棱PAAD上的點(diǎn),當(dāng)平面BEF//平面PCD時(shí),求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),下列四個(gè)命題正確的序號(hào)是( )

是偶函數(shù) ②③當(dāng)時(shí),取得極小值④滿足的正整數(shù)n的最小值為9

A.①②③B.①③④C.①②D.①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某快遞公司在某市的貨物轉(zhuǎn)運(yùn)中心,擬引進(jìn)智能機(jī)器人分揀系統(tǒng),以提高分揀效率和降低物流成本,已知購(gòu)買x臺(tái)機(jī)器人的總成本為萬元.

1)若使每臺(tái)機(jī)器人的平均成本最低,問應(yīng)買多少臺(tái)?

2)現(xiàn)按(1)中的數(shù)量購(gòu)買機(jī)器人,需要安排m人將郵件放在機(jī)器人上,機(jī)器人將郵件送達(dá)指定落袋格口完成分揀(如圖).經(jīng)實(shí)驗(yàn)知,每臺(tái)機(jī)器人的日平均分揀量為,(單位:件).已知傳統(tǒng)的人工分揀每人每日的平均分揀量為1200件,問引進(jìn)機(jī)器人后,日平均分揀量達(dá)最大時(shí),用人數(shù)量比引進(jìn)機(jī)器人前的用人數(shù)量最多可減少百分之幾?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某汽車公司最近研發(fā)了一款新能源汽車,并在出廠前對(duì)100輛汽車進(jìn)行了單次最大續(xù)航里程的測(cè)試,F(xiàn)對(duì)測(cè)試數(shù)據(jù)進(jìn)行分析,得到如圖所示的頻率分布直方圖:

1)估計(jì)這100輛汽車的單次最大續(xù)航里程的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表).

2)根據(jù)大量的汽車測(cè)試數(shù)據(jù),可以認(rèn)為這款汽車的單次最大續(xù)航里程近似地服從正態(tài)分布,經(jīng)計(jì)算第(1)問中樣本標(biāo)準(zhǔn)差的近似值為50。用樣本平均數(shù)作為的近似值,用樣本標(biāo)準(zhǔn)差作為的估計(jì)值,現(xiàn)任取一輛汽車,求它的單次最大續(xù)航里程恰在250千米到400千米之間的概率.

參考數(shù)據(jù):若隨機(jī)變量服從正態(tài)分布,則,.

3)某汽車銷售公司為推廣此款新能源汽車,現(xiàn)面向意向客戶推出“玩游戲,送大獎(jiǎng)”活動(dòng),客戶可根據(jù)拋擲硬幣的結(jié)果,操控微型遙控車在方格圖上行進(jìn),若遙控車最終停在“勝利大本營(yíng)”,則可獲得購(gòu)車優(yōu)惠券3萬元。已知硬幣出現(xiàn)正、反面的概率都是0.5方格圖上標(biāo)有第0格、第1格、第2格、…、第20格。遙控車開始在第0格,客戶每擲一次硬幣,遙控車向前移動(dòng)一次。若擲出正面,遙控車向前移動(dòng)一格(從)若擲出反面遙控車向前移動(dòng)兩格(從),直到遙控車移到第19格勝利大本營(yíng))或第20格(失敗大本營(yíng))時(shí),游戲結(jié)束。設(shè)遙控車移到第格的概率為P試證明是等比數(shù)列,并求參與游戲一次的顧客獲得優(yōu)惠券金額的期望值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列的前項(xiàng)和為,若,則稱數(shù)列”.

1)若數(shù)列,且,,,,求的取值范圍;

2)若是等差數(shù)列,首項(xiàng)為,公差為,且,判斷是否為數(shù)列;

3)設(shè)數(shù)列是等比數(shù)列,公比為,若數(shù)列都是數(shù)列,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓M:的左頂點(diǎn)為、中心為,若橢圓M過點(diǎn),且

1)求橢圓M的方程;

2)若△APQ的頂點(diǎn)Q也在橢圓M上,試求△APQ面積的最大值;

3)過點(diǎn)作兩條斜率分別為的直線交橢圓M兩點(diǎn),且,求證:直線恒過一個(gè)定點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新高考方案規(guī)定,普通高中學(xué)業(yè)水平考試分為合格性考試(合格考)和選擇性考試(選擇考).其中“選擇考”成績(jī)將計(jì)入高考總成績(jī),即“選擇考”成績(jī)根據(jù)學(xué)生考試時(shí)的原始卷面分?jǐn)?shù),由高到低進(jìn)行排序,評(píng)定為、、、五個(gè)等級(jí).某試點(diǎn)高中2018年參加“選擇考”總?cè)藬?shù)是2016年參加“選擇考”總?cè)藬?shù)的2倍,為了更好地分析該校學(xué)生“選擇考”的水平情況,統(tǒng)計(jì)了該校2016年和2018年“選擇考”成績(jī)等級(jí)結(jié)果,得到如下圖表:

針對(duì)該校“選擇考”情況,2018年與2016年比較,下列說法正確的是( )

A. 獲得A等級(jí)的人數(shù)減少了B. 獲得B等級(jí)的人數(shù)增加了1.5倍

C. 獲得D等級(jí)的人數(shù)減少了一半D. 獲得E等級(jí)的人數(shù)相同

查看答案和解析>>

同步練習(xí)冊(cè)答案