【題目】2019101日我國隆重紀念了建國70周年,期間進行了一系列大型慶;顒,極大地激發(fā)了全國人民的愛國熱情.某校高三學生也投入到了這場愛國活動中,他()們利用周日休息時間到社區(qū)做義務宣講員,學校為了調查高三男生和女生周日的活動時間情況,隨機抽取了高三男生和女生各40人,對他()們的周日活動時間進行了統(tǒng)計,分別得到了高三男生的活動時間(單位:小時)的頻數(shù)分布表和女生的活動時間(單位:小時)的頻率分布直方圖.(活動時間均在內)

活動時間

頻數(shù)

8

10

7

9

4

2

1)根據(jù)調查,試判斷該校高三年級學生周日活動時間較長的是男生還是女生?并說明理由;

2)在被抽取的80名高三學生中,從周日活動時間在內的學生中抽取2人,求恰巧抽到11女的概率.

【答案】1)女生,理由見解析;(2

【解析】

1)列出女生周日活動時間頻數(shù)表,對比男生和女生活動時間頻數(shù)表即可得出結論;

2)運用古典概型的概率計算公式求解即可.

解:(1)該校高三年級周日活動時間較長的是女生,

理由如下:列出女生周日活動時間頻數(shù)表

活動時間

頻數(shù)

6

7

12

10

4

對比男生和女生活動時間頻數(shù)表,可以發(fā)現(xiàn):

活動時間在2小時及其以上的男生有22人,女生有34人;

活動時間在3小時及其以上的男生有15,女生有26人;

都是女生人數(shù)多于男生人數(shù),所以該校高三年級周日活動時間較長的是女生;

2)被抽到的80學生中周日活動時間在內的男生有2人,分別記為,女生有4,分別記為,,,

從這6人中抽取2.共有以下15個基本事件,分別為:

,,,,,,,,,,,;

其中恰為11女的共有8種情形,

所以所求概率

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱柱中,底面是邊長為的菱形,.

1)證明:平面平面;

2)若,是等邊三角形,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在最新公布的湖南新高考方案中,“”模式要求學生在語數(shù)外3門全國統(tǒng)考科目之外,在歷史和物理2門科目中必選且只選1門,再從化學、生物、地理、政治4門科目中任選2門,后三科的高考成績按新的規(guī)則轉換后計入高考總分.相應地,高校在招生時可對特定專業(yè)設置具體的選修科目要求.雙超中學高一年級有學生1200人,現(xiàn)從中隨機抽取40人進行選科情況調查,用數(shù)字1~6分別依次代表歷史、物理、化學、生物、地理、政治6科,得到如下的統(tǒng)計表:

序號

選科情況

序號

選科情況

序號

選科情況

序號

選科情況

1

134

11

236

21

156

31

235

2

235

12

234

22

235

32

236

3

235

13

145

23

245

33

235

4

145

14

135

24

235

34

135

5

156

15

236

25

256

35

156

6

245

16

236

26

156

36

236

7

256

17

156

27

134

37

156

8

235

18

236

28

235

38

134

9

235

19

145

29

246

39

235

10

236

20

235

30

156

40

245

1)雙超中學規(guī)定:每個選修班最多編排50人且盡量滿額編班,每位老師執(zhí)教2個選修班(當且僅當一門科目的選課班級總數(shù)為奇數(shù)時,允許這門科目的1位老師只教1個班).已知雙超中學高一年級現(xiàn)有化學、生物科目教師每科各8人,用樣本估計總體,則化學、生物兩科的教師人數(shù)是否需要調整?如果需要調整,各需增加或減少多少人?

2)請創(chuàng)建列聯(lián)表,運用獨立性檢驗的知識進行分析,探究是否有的把握判斷學生“選擇化學科目”與“選擇物理科目”有關.

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

3)某高校在其熱門人文專業(yè)的招生簡章中明確要求,僅允許選修了歷史科目,且在政治和地理2門中至少選修了1門的考生報名.現(xiàn)從雙超中學高一新生中隨機抽取3人,設具備高校專業(yè)報名資格的人數(shù)為,用樣本的頻率估計概率,求的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,是邊長為6的正方形,已知,且并與對角線交于,現(xiàn)以為折痕將正方形折起,且重合,記重合后為,記重合后為.

1)求證:平面平面;

2)求平面與平面所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著互聯(lián)網(wǎng)金融的不斷發(fā)展,很多互聯(lián)網(wǎng)公司推出余額增值服務產(chǎn)品和活期資金管理服務產(chǎn)品,如螞蟻金服旗下的“余額寶”,騰訊旗下的“財富通”,京東旗下“京東小金庫”.為了調查廣大市民理財產(chǎn)品的選擇情況,隨機抽取1200名使用理財產(chǎn)品的市民,按照使用理財產(chǎn)品的情況統(tǒng)計得到如下頻數(shù)分布表:

分組

頻數(shù)(單位:名)

使用“余額寶”

使用“財富通”

使用“京東小金庫”

30

使用其他理財產(chǎn)品

50

合計

1200

已知這1200名市民中,使用“余額寶”的人比使用“財富通”的人多160名.

(1)求頻數(shù)分布表中,的值;

(2)已知2018年“余額寶”的平均年化收益率為,“財富通”的平均年化收益率為.若在1200名使用理財產(chǎn)品的市民中,從使用“余額寶”和使用“財富通”的市民中按分組用分層抽樣方法共抽取7人,然后從這7人中隨機選取2人,假設這2人中每個人理財?shù)馁Y金有10000元,這2名市民2018年理財?shù)睦⒖偤蜑?/span>,求的分布列及數(shù)學期望.注:平均年化收益率,也就是我們所熟知的利息,理財產(chǎn)品“平均年化收益率為”即將100元錢存入某理財產(chǎn)品,一年可以獲得3元利息.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動圓過定點,且與定直線相切.

1)求動圓圓心的軌跡的方程;

2)過點的任一條直線與軌跡交于不同的兩點,試探究在軸上是否存在定點(異于點),使得?若存在,求點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設三棱錐的每個頂點都在球的球面上,是面積為的等邊三角形,,,且平面平面.

1)確定的位置(需要說明理由),并證明:平面平面.

2)與側面平行的平面與棱分別交于,,,求四面體的體積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國古代數(shù)學家劉徽在《九章算術注》中記述:羨除,隧道也,其所穿地,上平下邪.如圖所示的五面體是一個羨除,兩個梯形側面相互垂直,.,,,梯形的高分別為31,則該羨除的體積

A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公園劃船收費標準如表:

某班16名同學一起去該公園劃船,若每人劃船的時間均為1小時,每只租船必須坐滿,租船最低總費用為______元,租船的總費用共有_____種可能.

查看答案和解析>>

同步練習冊答案