已知函數(shù),對任意實數(shù)
都有
成立,若當
時,
恒成立,則
的取值范圍是
A.
B.
或
C.
D.不能確定
B
【解析】
試題分析:因為函數(shù)對任意實數(shù)都有
成立,所以函數(shù)關(guān)于
對稱,又因為二次函數(shù)
的對稱軸為
,可以得到
,又函數(shù)在區(qū)間
上單調(diào)遞增,所以若
時,
恒成立
,對
時,
恒成立,即
,進而求得
或
考點:本題考查了二次函數(shù)的對稱性以及區(qū)間上函數(shù)單調(diào)性與對稱軸以及二次函數(shù)圖像開口方向之間的關(guān)系,同時又將恒成立問題轉(zhuǎn)化成最值問題求解的思想嵌入此題,實屬不易。
點評:本題難度有所拔高,把單調(diào)性、對稱性、恒成立問題、最值問題柔和在一起組成此題,雖然難度上有所拔高,對學(xué)生的邏輯推理以及分析問題的能力的要求都有所提高,但本題確實是一道一見的好題。
科目:高中數(shù)學(xué) 來源:2014屆重慶南開中學(xué)高三上學(xué)期9月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)滿足對任意實數(shù)
都有
成立,且當
時,
,
.
(1)求的值;
(2)判斷在
上的單調(diào)性,并證明;
(3)若對于任意給定的正實數(shù),總能找到一個正實數(shù)
,使得當
時,
,則稱函數(shù)
在
處連續(xù)。試證明:
在
處連續(xù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆黑龍江省高一下學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:選擇題
已知函數(shù),對任意實數(shù)x都有
成立,若當
時,
恒成立,則b的取值范圍是( )
A. B.
C.
或
D.不能確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆福建省高二下學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知函數(shù)滿足對任意實數(shù)
,都有
成立,則實數(shù)
的取值范圍為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆浙江省高一年級期中考試數(shù)學(xué)試卷 題型:選擇題
已知函數(shù)滿足:對任意實數(shù)
,當
時,總有
,那么實數(shù)
的取值范圍是
( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年福建省高一下學(xué)期第一次月考試數(shù)學(xué)試卷 題型:解答題
(本小題滿分10分)
已知函數(shù)、
對任意實數(shù)
、
都滿足條件
①,且
,和②
,且
,
(為正整數(shù))
(Ⅰ)求數(shù)列、
的通項公式;
(II)設(shè),求數(shù)列
的前
項和
。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com