已知圓C1:(x-1)2+y2=1;圓C2:x2+(y+2)2=1,則圓C1與C2的位置關(guān)系是(  )
分析:根據(jù)兩圓的標(biāo)準(zhǔn)方程求出這兩個(gè)圓的圓心和半徑,求出圓心距,再根據(jù)兩圓的圓心距C1C2大于半徑之和,得出結(jié)論.
解答:解:已知圓C1:(x-1)2+y2=1;圓C2:x2+(y+2)2=1,則圓C1(1,0),C2(0,-2),
兩圓的圓心距C1C2=
1+4
=
5
,大于半徑之和,故兩圓相離,
故選A.
點(diǎn)評(píng):本題主要考查圓的標(biāo)準(zhǔn)方程,兩圓的位置關(guān)系的判定方法,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

5、已知圓C1:(x+1)2+(y-1)2=1,圓C2與圓C1關(guān)于直線x-y-1=0對(duì)稱(chēng),則圓C2的方程為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓c1:(x+1)2+y2=8,點(diǎn)c2(1,0),點(diǎn)Q在圓C1上運(yùn)動(dòng),QC2的垂直一部分線交QC1于點(diǎn)P.
(I)求動(dòng)點(diǎn)P的軌跡W的方程;
(II)過(guò)點(diǎn)S(0,-
13
)且斜率為k的動(dòng)直線l交曲線W于A、B兩點(diǎn),在y軸上是否存在定點(diǎn)D,使以AB為直徑的圓恒過(guò)這個(gè)點(diǎn)?若存在,求出D的坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C1:(x+1)2+y2=8,點(diǎn)C2(1,0),點(diǎn)Q在圓C1上運(yùn)動(dòng),QC2的垂直平分線交QC1于點(diǎn)P.
(Ⅰ) 求動(dòng)點(diǎn)P的軌跡W的方程;
(Ⅱ) 設(shè)M,N是曲線W上的兩個(gè)不同點(diǎn),且點(diǎn)M在第一象限,點(diǎn)N在第三象限,若
OM
+2
ON
=2
OC1
,O為坐標(biāo)原點(diǎn),求直線MN的斜率k;
(Ⅲ)過(guò)點(diǎn)S(0,-
1
3
)
且斜率為k的動(dòng)直線l交曲線W于A,B兩點(diǎn),在y軸上是否存在定點(diǎn)D,使以AB為直徑的圓恒過(guò)這個(gè)點(diǎn)?若存在,求出D的坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C1:(x+1)2+(y-1)2=1,圓C2與圓C1關(guān)于直線x-y-2=0對(duì)稱(chēng);
(1)求圓C2的方程,
(2)過(guò)點(diǎn)(2,0)作圓C2的切線l,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案