設(shè)f(x)=ax2+bx,且1≤f(-1)≤2,2≤f(1)≤4,則f(2)的最大值為________.

解:因?yàn)閒(x)=ax2+bx,且1≤f(-1)≤2,2≤f(1)≤4,
所以1≤a-b≤2,…①,
2≤a+b≤4,…②,
由②×3+①可得:5≤4a+2b≤14
又f(2)=4a+2b,
所以f(2)的最大值為:14.
故答案為:14.
分析:通過已知條件求出a、b滿足的不等式,求出f(2)的表達(dá)式,利用不等式的基本性質(zhì)求解即可.
點(diǎn)評(píng):本題考查不等式的基本性質(zhì)的應(yīng)用,也可以利用線性規(guī)劃解答本題,由于a、b是互相影響與制約的,不可以求出a、b的范圍來解答,會(huì)使范圍擴(kuò)大,是易錯(cuò)點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

13、設(shè)f(x)=ax2+bx+c(a≠0),對(duì)于任意-1≤x≤1,有f(x)|≤1;求證|f(2)|≤7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于函數(shù)f(x),其定義域?yàn)镈,若任取x1、x2∈D,且x1≠x2,若f(
x1+x2
2
)>
1
2
[f(x1)+f(x2)],則稱f(x)為定義域上的凸函數(shù).
(1)設(shè)f(x)=ax2(a>0),試判斷f(x)是否為其定義域上的凸函數(shù),并說明原因;
(2)若函數(shù)f(x)=㏒ax(a>0,且a≠1)為其定義域上的凸函數(shù),試求出實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=ax2+x-a,g(x)=2ax+5-3a
(1)若f(x)在x∈[0,1]上的最大值是
54
,求a的值;
(2)若對(duì)于任意x1∈[0,1],總存在x0∈[0,1],使得g(x0)=f(x1)成立,求a的取值范圍;
(3)若f(x)=g(x)在x∈[0,1]上有解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于給定正數(shù)k,定fk(x)=
f(x)   (f(x)≤k)
k    (f(x)>k)
,設(shè)f(x)=ax2-2ax-a2+5a+2,對(duì)任意x∈R和任意a∈(-∞,0)恒有fk(x)=
f(x)
,則(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•閔行區(qū)二模)設(shè)f(x)=ax2+bx,且1≤f(-1)≤2,2≤f(1)≤4,則f(2)的最大值為
14
14

查看答案和解析>>

同步練習(xí)冊(cè)答案