(本小題滿分10分)
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(t為參數(shù),α為直線的傾斜角),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為.
(1) 若直線與圓C相切,求的值;
(2) 若直線與圓C交與A,B兩點(diǎn),求的值.

(1)  (2)

解析試題分析:解:(1)所求直線l的普通方程為:   .………1分
圓C的直角坐標(biāo)方程為:      ………3分
直線l與圓C切于點(diǎn)M,則,所以 ..…5分
(2)若,則
將l的方程代入圓C的方程得:,………7分
   ………10分
考點(diǎn):直角坐標(biāo)方程;參數(shù)方程;極坐標(biāo)方程。
點(diǎn)評:解決此類題目,關(guān)鍵是把問題轉(zhuǎn)化成直角坐標(biāo)系里面的問題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系xOy中,求過橢圓 (φ為參數(shù))的右焦點(diǎn),且與直線 (t為參數(shù))平行的直線的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線C的參數(shù)方程為為參數(shù),).求曲線C的普通方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(考生注意:只能從A,B,C中選擇一題作答,并將答案填寫在相應(yīng)字母后的橫線上,若多做,則按所做的第一題評閱給分.)
A.選修4-1:幾何證明選講
已知Rt△ABC的兩條直角邊AC,BC的長分別為3cm,4cm,以AC為直徑的圓與AB交于點(diǎn)D,則BD的值為____.

B.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,已知圓與直線相切,求實數(shù)a的值______.
C.選修4-5:不等式選講
不等式對任意實數(shù)恒成立,求實數(shù)的取值范圍____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

本小題滿分10分)
已知直線l經(jīng)過點(diǎn)P(,1),傾斜角,在極坐標(biāo)系下,圓C的極坐標(biāo)方程為
(1)寫出直線l的參數(shù)方程,并把圓C的方程化為直角坐標(biāo)方程;
(2)設(shè)l與圓C相交于A,B兩點(diǎn),求點(diǎn)P到A,B兩點(diǎn)的距離之積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)(選修4-4:坐標(biāo)系與參數(shù)方程)
在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).若以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,則曲線的極坐標(biāo)方程為.
(I)求曲線的直角坐標(biāo)方程;
(II)求直線被曲線所截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線C:為參數(shù)).
(1)將C的參數(shù)方程化為普通方程;
(2)若把C上各點(diǎn)的坐標(biāo)經(jīng)過伸縮變換后得到曲線,求曲線上任意一點(diǎn)到兩坐標(biāo)軸距離之積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

某班的40位同學(xué)已編號1,2,3,…,40,為了解該班同學(xué)的作業(yè)情況,老師收取了號碼能被5整除的8名同學(xué)的作業(yè)本,這里運(yùn)用的抽樣方法是( )

A.簡單隨機(jī)抽樣B.抽簽法C.系統(tǒng)抽樣D.分層抽樣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知樣本9,10,11,x,y的平均數(shù)是10,標(biāo)準(zhǔn)差是,則的值為

A.100  B.98  C.96  D.94

查看答案和解析>>

同步練習(xí)冊答案