【題目】某公園準(zhǔn)備在一圓形水池里設(shè)置兩個觀景噴泉,觀景噴泉的示意圖如圖所示,A,B兩點(diǎn)為噴泉,圓心O為AB的中點(diǎn),其中OA=OB=a米,半徑OC=10米,市民可位于水池邊緣任意一點(diǎn)C處觀賞.
(1)若當(dāng)∠OBC= 時,sin∠BCO= ,求此時a的值;
(2)設(shè)y=CA2+CB2 , 且CA2+CB2≤232.
(i)試將y表示為a的函數(shù),并求出a的取值范圍;
(ii)若同時要求市民在水池邊緣任意一點(diǎn)C處觀賞噴泉時,觀賞角度∠ACB的最大值不小于 ,試求A,B兩處噴泉間距離的最小值.
【答案】
(1)解:在△OBC中,由正弦定理得, ,
易得
(2)解:(i)易知AC2=100+a2﹣20acos∠AOC,BC2=100+a2﹣20acos∠BOC,
故CA2+CB2=200+2a2,
又因為CA2+CB2≤232,即200+2a2≤232,解得0<a≤4,
即y=200+2a2,a∈(0,4];
(ii)當(dāng)觀賞角度∠ACB的最大時,cos∠ACB取得最小值,由余弦定理可得 ,
即
由題意可知 ,解此不等式得 ,
經(jīng)驗證, ,即
【解析】(1)當(dāng)∠OBC= 時,sin∠BCO= ,由正弦定理求此時a的值;(2)(i)利用余弦定理,結(jié)合CA2+CB2≤232,即200+2a2≤232,可將y表示為a的函數(shù),并求出a的取值范圍;(ii)當(dāng)觀賞角度∠ACB的最大時,cos∠ACB取得最小值,由余弦定理可得結(jié)論.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用正弦定理的定義和余弦定理的定義的相關(guān)知識可以得到問題的答案,需要掌握正弦定理:;余弦定理:;;.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知恒等式(1+x+x2)n=a0+a1x+a2x2+…+a2nx2n .
(1)求a1+a2+a3+…+a2n和a2+2a3+22a4+…+22n﹣2a2n的值;
(2)當(dāng)n≥6時,求證: a2+2A a3+…+22n﹣2 a2n<49n﹣2 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為 (α為參數(shù))以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為 .若直線l與曲線C交于A,B,求線段AB的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在圓上任取一點(diǎn),過點(diǎn)作軸的垂線段,為垂足.,當(dāng)點(diǎn)在圓上運(yùn)動時,
(1)求點(diǎn)的軌跡的方程;
(2) 若,直線交曲線于、兩點(diǎn)(點(diǎn)、與點(diǎn)不重合),且滿足.為坐標(biāo)原點(diǎn),點(diǎn)滿足,證明直線過定點(diǎn),并求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線
(1)若,求經(jīng)過點(diǎn)且與曲線只有一個公共點(diǎn)的直線方程:
(2)若,請在直角坐標(biāo)平面內(nèi)找出縱坐標(biāo)不同的兩個點(diǎn),此兩點(diǎn)滿足條件:無論如何變化,這兩個點(diǎn)都不在曲線上;
(3)若曲線與線段有公共點(diǎn),求的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時,求曲線在點(diǎn)處的切線方程;
(2)設(shè),若不等式對任意恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:x∈[-1,2],函數(shù)f(x)=x2-x的值大于0,若p∨q是真命題,則命題q可以是( )
A. x0∈(-1,1),cos x0<
B. “-3<m<0”是“函數(shù)f(x)=x+log2x+m在區(qū)間上有零點(diǎn)”的必要不充分條件
C. x=是曲線f(x)=sin 2x+cos 2x的一條對稱軸
D. 若x∈(0,2),則在曲線f(x)=ex(x-2)上任意一點(diǎn)處的切線的斜率不小于
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,圓C的方程為ρ=2acosθ(a≠0),以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸正半軸建立平面直角坐標(biāo)系,設(shè)直線l的參數(shù)方程為 (t為參數(shù)).
(1)求圓C的直角坐標(biāo)方程(化為標(biāo)準(zhǔn)方程)和直線l的極坐標(biāo)方程;
(2)若直線l與圓C只有一個公共點(diǎn),且a<1,求a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com