【題目】在直角坐標系xOy中,已知點P( ,1),直線l的參數(shù)方程為t為參數(shù))若以O(shè)為極點,以O(shè)x為極軸,選擇相同的單位長度建立極坐標系,則曲線C的極坐標方程為ρ= cos(θ-

(Ⅰ)求直線l的普通方程和曲線C的直角坐標方程;

(Ⅱ)設(shè)直線l與曲線C相交于A,B兩點,求點P到A,B兩點的距離之積.

【答案】(1)(2)

【解析】試題分析:(I)由加減消元法可將直線l的參數(shù)方程化為普通方程;由 可將曲線C的極坐標方程化為直角坐標方程.

(II)把直線l的參數(shù)方程,代入圓的方程可得 ,由于點P( ,1)在直線l上,可得|PA||PB|=|t1t2|.利用韋達定理可得結(jié)果

試題解析:解:(I)由直線l的參數(shù)方程,消去參數(shù)t,可得=0;

由曲線C的極坐標方程ρ=cos(θ-)展開為

化為ρ2cosθ+ρsinθ,

∴曲線C的直角坐標方程為x2+y2=x+y,即=

(II)把直線l的參數(shù)方程代入圓的方程可得=0,

∵點P(,1)在直線l上,∴|PA||PB|=|t1t2|=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗員每隔30 min從該生產(chǎn)線上隨機抽取一個零件,并測量其尺寸(單位:cm).下面是檢驗員在一天內(nèi)依次抽取的16個零件的尺寸:

抽取順序

1

2

3

4

5

6

7

8

零件尺寸

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

抽取次序

9

10

11

12

13

14

15

16

零件尺寸

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

經(jīng)計算得=xi=9.97,s==≈0.212,≈18.439,(xi)(i﹣8.5)=﹣2.78,

 其中xi為抽取的第i個零件的尺寸,i=1,2,…,16.

 (1)求(xi,i)(i=1,2,…,16)的相關(guān)系數(shù)r,并回答是否可以認為這一天生產(chǎn)的零件尺寸不隨生產(chǎn)

 過程的進行而系統(tǒng)地變大或變小(若|r|<0.25,則可以認為零件的尺寸不隨生產(chǎn)過程的進行而系統(tǒng)地

 變大或變小).

 (2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在﹣3s,+3s)之外的零件,就認為這條生產(chǎn)線在這一天

 的生產(chǎn)過程可能出現(xiàn)了異常情況,需對當天的生產(chǎn)過程進行檢查.

 ①從這一天抽檢的結(jié)果看,是否需對當天的生產(chǎn)過程進行檢查?

、谠﹣3s,+3s)之外的數(shù)據(jù)稱為離群值,試剔除離群值,估計這條生產(chǎn)線當天生產(chǎn)的零件尺寸的

 均值與標準差.(精確到0.01)

附:樣本(xi,yi)(i=1,2,…,n)的相關(guān)系數(shù)r=,≈0.09.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足:a1=1,nan+1﹣(n+1)an=1(n∈N+
(1)求數(shù)列{an}的通項公式;
(2)若 ,求數(shù)列{bn}的最大項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,x∈R.
(1)證明對a、b∈R,且a≠b,總有:|f(a)﹣f(b)|<|a﹣b|;
(2)設(shè)a、b、c∈R,且 ,證明:a+b+c≥ab+bc+ca.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的函數(shù)f(x)滿足f(x+2)=2f(x),且當x∈[2,4]時, ,g(x)=ax+1,對x1∈[﹣2,0],x2∈[﹣2,1],使得g(x2)=f(x1),則實數(shù)a的取值范圍為(
A.
B.
C.(0,8]
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年存節(jié)期間,某服裝超市舉辦了一次有獎促銷活動,消費每超過600 元(含600元),均可抽獎一次,抽獎方案有兩種,顧客只能選擇其中的一種. 方案一:從裝有10個形狀、大小完全相同的小球(其中紅球3個,黑球7個)的抽獎盒中,一次性摸出3個球,其中獎規(guī)則為:若摸到3個紅球,享受免單優(yōu)惠;若摸到2個紅球,則打6折;若摸到1個紅球,則打7折;若沒摸到紅球,則不打折.
方案二:從裝有10個形狀、大小完全相同的小球(其中紅球3個,黑球7個)的抽獎盒中,有放回每次摸取1球,連摸3次,每摸到1次紅球,立減200元.
(1)若兩個顧客均分別消費了 600元,且均選擇抽獎方案一,試求兩位顧客均享受免單優(yōu)惠的概率;
(2)若某顧客消費恰好滿1000元,試從概率的角度比較該顧客選擇哪一種抽獎方案更合算.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】調(diào)查某醫(yī)院某段時間內(nèi)嬰兒出生的時間與性別的關(guān)系,得到下面的數(shù)據(jù):出生時間在晚上的男嬰為24人,女嬰為8人;出生時間在白天的男嬰為31人,女嬰為26人.

(1)將2×2列聯(lián)表補充完整.

性別

出生時間

總計

晚上

白天

男嬰

女嬰

總計

(2)能否在犯錯誤的概率不超過0.1的前提下認為嬰兒性別與出生時間有關(guān)系?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+bln x在x=1處有極值.

(1)求a,b的值;

(2)求函數(shù)y=f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的函數(shù)f(x)滿足:
(1)函數(shù)y=f(x﹣1)的圖象關(guān)于點(1,0)對稱;
(2)對x∈R,f( ﹣x)=f( +x)成立
(3)當x∈(﹣ ,﹣ ]時,f(x)=log2(﹣3x+1),則f(2011)=( )
A.﹣5
B.﹣4
C.﹣3
D.﹣2

查看答案和解析>>

同步練習(xí)冊答案