下列命題中:
①命題“?x∈R,x2≥0”的否定是“?x∈R,x2≤0”;
②線性相關(guān)系數(shù)r的絕對(duì)值越接近于1,表明兩個(gè)變量線性相關(guān)程度越強(qiáng);
③若n?a,m∥n,則m∥a;
④“a=
25
”是“直線ax+2y+3a=0與直線3x+(a-1)y+7-a=0相互垂直”的充要條件.
其中真命題的序號(hào)是
 
.(請(qǐng)?zhí)钌纤姓婷}的序號(hào))
分析:對(duì)于①分別否定全稱命題“?x∈R,x2≥0”的題設(shè)和結(jié)論,得到它的否定;②根據(jù)線性回歸分析中相關(guān)系數(shù)的定義;③若n?a,m∥n,m?α,則m不平行于a;④根據(jù)兩條直線A1x+B1y+C1=0,A2x+B2y+C2=0垂直,就是兩條直線的方向向量的數(shù)量積為0,求解即可得到.
解答:解:對(duì)于①分別否定全稱命題“?x∈R,x2≥0”的題設(shè)和結(jié)論,得到它的否定“?x∈R,x2<0”.故錯(cuò);
②根據(jù)線性回歸分析中相關(guān)系數(shù)的定義:在線性回歸分析中,相關(guān)系數(shù)為r,|r|越接近于1,相關(guān)程度越大;|r|越小,相關(guān)程度越小,故對(duì);
③若n?a,m∥n,m?α,則m不平行于a;故錯(cuò);
④根據(jù)兩條直線A1x+B1y+C1=0,A2x+B2y+C2=0垂直,就是兩條直線的方向向量的數(shù)量積為0,求解即可得到“a=
2
5
”.
故答案為:②④.
點(diǎn)評(píng):本小題主要考查命題的否定、相關(guān)系數(shù)、直線的一般式方程與直線的垂直關(guān)系等基礎(chǔ)知識(shí),考查轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
(1)命題“若b2-4ac<0,則方程ax2+bx+c=0(a≠0)無(wú)實(shí)根”的否命題
(2)命題“△ABC中,AB=BC=CA,那么△ABC為等邊三角形”的逆命題
(3)命題“若a>b>0,則
3
a
3
b
>0”的逆否命題
(4)“若m>1,則mx2-2(m+1)x+(m-3)>0的解集為R”的逆命題
其中真命題的序號(hào)為
(1),(2),(3)
(1),(2),(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①有兩個(gè)面平行,其余各面都是平行四邊形所圍成的幾何體一定是棱柱;
②有一個(gè)面是多邊形,其余各面都是三角形所圍成的幾何體是棱錐;
③用一個(gè)平行于棱錐底面的平面去截棱錐,得到的幾何體叫棱臺(tái).
以上命題中真命題的個(gè)數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中正確命題的個(gè)數(shù)是
(1)命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1則x2-3x+2≠0”
(2)設(shè)回歸直線方程
y
=1+2x中,x平均增加1個(gè)單位時(shí),y平均增加2個(gè)單位
(3)若p∧q為假命題,則p,q均為假命題
(4)對(duì)命題p:?x0∈R,使得x02+x0+1<0,則?p:?x∈R,均有x2+x+1≥0;( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

給出下列命題:
①有兩個(gè)面平行,其余各面都是平行四邊形所圍成的幾何體一定是棱柱;
②有一個(gè)面是多邊形,其余各面都是三角形所圍成的幾何體是棱錐;
③用一個(gè)平行于棱錐底面的平面去截棱錐,得到的幾何體叫棱臺(tái).
以上命題中真命題的個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年河北省保北十二縣市高一(下)期中數(shù)學(xué)試卷(解析版) 題型:選擇題

給出下列命題:
①有兩個(gè)面平行,其余各面都是平行四邊形所圍成的幾何體一定是棱柱;
②有一個(gè)面是多邊形,其余各面都是三角形所圍成的幾何體是棱錐;
③用一個(gè)平行于棱錐底面的平面去截棱錐,得到的幾何體叫棱臺(tái).
以上命題中真命題的個(gè)數(shù)為( )
A.0
B.1
C.2
D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案