精英家教網 > 高中數學 > 題目詳情
1.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),若過其右焦點F作傾斜角為45°的直線l與雙曲線右支有兩個不同的交點,則雙曲線的離心率的范圍是(1,$\sqrt{2}$).

分析 要使直線與雙曲線有兩個交點,需使雙曲線的其中一漸近線方程的斜率小于直線的斜率,即$\frac{a}$<tan45°=1,求得a和b的不等式關系,進而轉化成a和c的不等式關系,求得離心率的一個范圍,最后根據雙曲線的離心率大于1,綜合可得求得e的范圍.

解答 解:要使直線與雙曲線有兩個交點,需使雙曲線的其中一漸近線方程的斜率小于直線的斜率,
即$\frac{a}$<tan45°=1,即b<a
∴$\sqrt{{c}^{2}-{a}^{2}}$<a,
整理得c<$\sqrt{2}$a,
∴e=$\frac{c}{a}$<$\sqrt{2}$,
∵雙曲線中e>1,
∴e的范圍是(1,$\sqrt{2}$)
故答案為(1,$\sqrt{2}$).

點評 本題以雙曲線為載體,考查了雙曲線的簡單性質.在求離心率的范圍時,注意雙曲線的離心率大于1.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

11.△AOB是直角邊長為1的等腰直角三角形,在坐標系中位置如圖所示,O為坐標原點,P(a,b)是三角形內任意一點,且滿足b=2a,過P點分別做OB,OA,AB三邊的平行線,求陰影部分面積的最大值及此時P點坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

12.設實數x、y滿足約束條件$\left\{\begin{array}{l}x+y≤2\\ x≥y\\ y≥0\end{array}\right.$則目標函數z=2x-y的最大值是4.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

9.已知點P是直線y=x+2與橢圓$Γ:\frac{x^2}{a^2}+{y^2}=1(a>1)$的一個公共點,F(xiàn)1,F(xiàn)2分別為該橢圓的左右焦點,設|PF1|+|PF2|取得最小值時橢圓為C.
(1)求橢圓C的方程;
(2)已知A,B是橢圓C上關于y軸對稱的兩點,Q是橢圓C上異于A,B的任意一點,直線QA,QB分別與y軸交于點M(0,m),N(0,n),試判斷mn是否為定值,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.過雙曲線${x^2}-\frac{y^2}{4}=1$的右焦點作直線l交雙曲線于A,B兩點,則|AB|的最小值為( 。
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

6.已知F1,F(xiàn)2為橢圓${C_1}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦點,F(xiàn)1在以$Q(-\sqrt{2},1)$為圓心,1為半徑的圓C2上,且|QF1|+|QF2|=2a.
(1)求橢圓C1的方程;
(2)過點P(0,1)的直線l1交橢圓C1于A,B兩點,過P與l1垂直的直線l2交圓C2于C,D兩點,M為線段CD中點,求△MAB面積的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

13.若復數z滿足(1+i)•z=2i(i為虛數單位),則復數z=1+i.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.若二次函數y=-x2+bx+c的圖象的對稱軸是x=2,則有(  )
A.f(1)≤f(2)≤f(4)B.f(2)>f(1)>f(4)C.f(2)<f(4)<f(1)D.f(4)>f(2)>f(1)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.設函數f(x)=x2+bx-alnx.
(1)若a=1,b=0,求函數f(x)的極值;
(2)若x=2是函數f(x)的極值點,1和x0是函數f(x)的兩個不同零點,且x0∈(n,n+1),n∈N,求n;
(3)若對任意b∈[-2,-1],都存在x∈(1,e),使得f(x)<0成立,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案