(本小題13分)如圖,棱錐的底面是矩形,⊥平面,,

(1)求證:⊥平面;
(2)求二面角的大;
(3)求點(diǎn)到平面的距離.

(1)見(jiàn)解析;(2);(3)

解析試題分析:(方法一)證明:(1)在中,,,
所以為正方形,因此. ∵⊥平面,平面
.又∵, ∴⊥平面.                    ……4分               
(2)解:由⊥平面,知在平面內(nèi)的射影,
,∴,知為二面角的平面角.   
又∵,∴ .                                     ……9分                                                    
(3)∵,∴,
設(shè)到面的距離為
,有,                        
,
.                                                        ……14分       
(方法二)證明:(Ⅰ)建立如圖所示的直角坐標(biāo)系,

、.
中,, ,,
   ∵,
,又∵, ∴⊥平面.          ……4分               
解:(2)由(Ⅰ)得.
設(shè)平面的法向量為,則
,∴  故平面的法向量可取為 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
在如圖的多面體中,⊥平面,,,,,,的中點(diǎn).

(Ⅰ) 求證:平面;
(Ⅱ) 求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(20) (本題滿分14分) 已知正四棱錐P-ABCD中,底面是邊長(zhǎng)為2 的正方形,高為.M為線段PC的中點(diǎn).

(Ⅰ) 求證:PA∥平面MDB;
(Ⅱ) N為AP的中點(diǎn),求CN與平面MBD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分13分)如圖所示,在四棱錐中,平面,,
平分,的中點(diǎn).

求證:(1)平面;
(2)平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)
如圖,四棱錐P—ABCD中,PB⊥底面ABCD,CD⊥PD,底面ABCD為直角梯形,AD∥BC,AB⊥BC,AB=AD=PB=3,點(diǎn)E在棱PA上,且PE=2EA。
(1)求直線PC與平面PAD所成角的余弦值;(6分)
(2)求證:PC//平面EBD;(4分)
(3)求二面角A—BE—D的余弦值.(4分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,在長(zhǎng)方體中,,,是棱上一點(diǎn),

(1)若為CC1的中點(diǎn),求異面直線A1M和C1D1所成的角的正切值;
(2)是否存在這樣的,使得平面ABM⊥平面A1B1M,若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四棱錐中,底面為平行四邊形,,,⊥底面.①證明:平面平面; ②若二面角,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)如圖,為空間四點(diǎn).在中,.等邊三角形為軸運(yùn)動(dòng).
(1)當(dāng)平面平面時(shí),求;
(2)當(dāng)轉(zhuǎn)動(dòng)時(shí),證明總有?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖:在多面體中,,,
,。

(1)求證:;
(2)求證:
(3)求二面角的余弦值。

查看答案和解析>>

同步練習(xí)冊(cè)答案