【題目】每年六、七月份,我國(guó)長(zhǎng)江中下游地區(qū)進(jìn)入持續(xù)25天左右的梅雨季節(jié),如圖是江南某地區(qū)年10年間梅雨季節(jié)的降雨量單位:的頻率分布直方圖,試用樣本頻率估計(jì)總體概率,解答下列問(wèn)題:
假設(shè)每年的梅雨季節(jié)天氣相互獨(dú)立,求該地區(qū)未來(lái)三年里至少有兩年梅雨季節(jié)的降雨量超過(guò)350mm的概率.
老李在該地區(qū)承包了20畝土地種植楊梅,他過(guò)去種植的甲品種楊梅,平均每年的總利潤(rùn)為28萬(wàn)元而乙品種楊梅的畝產(chǎn)量畝與降雨量之間的關(guān)系如下面統(tǒng)計(jì)表所示,又知乙品種楊梅的單位利潤(rùn)為元,請(qǐng)你幫助老李分析,他來(lái)年應(yīng)該種植哪個(gè)品種的楊梅可以使總利潤(rùn)萬(wàn)元的期望更大?并說(shuō)明理由.
降雨量 | ||||
畝產(chǎn)量 | 500 | 700 | 600 | 400 |
【答案】(1) ;(2)乙品種楊梅的總利潤(rùn)較大.
【解析】
(1)由頻率分布直方圖中矩形面積和為1,計(jì)算第四組的頻率,再求出第三組矩形面積的一半,求和即可求出對(duì)應(yīng)的概率值,再利用獨(dú)立重復(fù)試驗(yàn)概率公式可得結(jié)果;(2)根據(jù)直方圖求隨機(jī)變量的概率,可得隨機(jī)變量的分布列,求出乙品種楊梅的總利潤(rùn)的數(shù)學(xué)期望,與過(guò)去種植的甲品種楊梅平均每年的總利潤(rùn)為28萬(wàn)元比較得出結(jié)論和建議.
(1)頻率分布直方圖中第四組的頻率為
該地區(qū)在梅雨季節(jié)的降雨量超過(guò)的概率為
所以該地區(qū)未來(lái)三年里至少有兩年梅雨季節(jié)的降雨量超過(guò)的概率為
(或.)
(2)據(jù)題意,總利潤(rùn)為元,其中.
所以隨機(jī)變量(萬(wàn)元)的分布列如下表:
| 27 | 35 | 31.2 | 22.4 |
| 0.2 | 0.4 | 0.3 | 0.1 |
故總利潤(rùn)(萬(wàn)元)的期望
(萬(wàn)元)
因?yàn)?/span>,所以老李應(yīng)該種植乙品種楊梅可使總利潤(rùn)(萬(wàn)元)的期望更大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)是定義在上的函數(shù),其導(dǎo)函數(shù)為,若,,則不等式(其中為自然對(duì)數(shù)的底數(shù))的解集為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓的離心率為,點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)設(shè)直線與圓相切,與橢圓相交于兩點(diǎn),求證:是定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在圓心角為直角的扇形OAB區(qū)域中,M、N分別為OA、OB的中點(diǎn),在M、N兩點(diǎn)處各有一個(gè)通信基站,其信號(hào)的覆蓋范圍分別為以OA、OB為直徑的圓,在扇形OAB內(nèi)隨機(jī)取一點(diǎn),則此點(diǎn)無(wú)信號(hào)的概率是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用一個(gè)平面去截直立放置的圓柱,得圓柱的下半部分如圖,其中為截面的最低點(diǎn),為截面的最高點(diǎn),為線段中點(diǎn),為截面邊界上任意一點(diǎn),作垂直圓柱底面于點(diǎn),垂直圓柱于底面于點(diǎn),垂直圓柱于底面于點(diǎn),圓柱底面圓心為。已知為底面直徑,在以為直徑的圓周上,垂直底面,,,,以為原點(diǎn),為軸正方向,圓柱底面為平面,為軸正方向建立空間直角坐標(biāo)系,設(shè)點(diǎn)。
(1)求點(diǎn)的坐標(biāo),并求出與之間滿足的關(guān)系式;
(2)三視圖是解決立體幾何問(wèn)題時(shí)的有效工具,將圓柱下半部分在平面上的投影作為主視圖,在平面上的投影作為俯視圖;在方框中作出主視圖,并說(shuō)明理由;再求出左視圖所圍區(qū)域的面積;
(3)判斷截面的邊界是什么曲線,并證明.再指出截面的面積(不需要證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線的一個(gè)焦點(diǎn)是,且
(1)求雙曲線的方程
(2)設(shè)經(jīng)過(guò)焦點(diǎn)的直線的一個(gè)法向量為,當(dāng)直線與雙曲線的右支相交于不同的兩點(diǎn)時(shí),求實(shí)數(shù)的取值范圍
(3)設(shè)(2)中直線與雙曲線的右支相交于兩點(diǎn),問(wèn)是否存在實(shí)數(shù),使得為銳角?若存在,請(qǐng)求出的范圍;若不存在,請(qǐng)說(shuō)明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在的二項(xiàng)展開(kāi)式中,所有項(xiàng)的二項(xiàng)式系數(shù)之和為.
(1)求展開(kāi)式的常數(shù)項(xiàng):
(2)求展開(kāi)式中所有奇數(shù)項(xiàng)的系數(shù)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓:的離心率為,且左焦點(diǎn)F1到左準(zhǔn)線的距離為4.
(1)求橢圓的方程;
(2)若與原點(diǎn)距離為1的直線l1:與橢圓相交于A,B兩點(diǎn),直線l2與l1平行,且與橢圓相切于點(diǎn)M(O,M位于直線l1的兩側(cè)).記△MAB,△OAB的面積分別為S1,S2,若,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com