在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若.
(1)求證:;
(2)若,且,求的值.
(1)證明見解析;(2).
解析試題分析:(1)要求證角的范圍,我們應(yīng)該求出或的取值范圍,已知條件是角的關(guān)系,首先變形(通分,應(yīng)用三角公式)得,結(jié)合兩角和與差的余弦公式,有,即,變形為,解得,所以有,也可由正弦定理得,再由余弦定理有,從而有,也能得到;(2)要求向量的模,一般通過求這個(gè)向量的平方來解決,而向量的平方可由向量的數(shù)量積計(jì)算得到,如,由及可得,由(1),于是可得,這樣所要結(jié)論可求.
(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/40/3/n40sb1.png" style="vertical-align:middle;" /> 2分
所以 ,由正弦定理可得, 4分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d3/9/1qjgt2.png" style="vertical-align:middle;" />,
所以,即 6分
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a7/5/pvrgf3.png" style="vertical-align:middle;" />,且,所以B不是最大角,
所以. 8分
所以,得,因而. 10分
由余弦定理得,所以. 12分
所以
即 14分
考點(diǎn):(1)三角恒等式與余弦定理;(2)向量的模.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知ΔABC的角A、B、C所對(duì)的邊分別是a、b、c,設(shè)向量,, .
(1)若//,求證:ΔABC為等腰三角形;
(2)若⊥,邊長,角,求ΔABC的面積 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且a=2,.
(1)若b=4,求sin A的值;
(2)若△ABC的面積S△ABC=4,求b,c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知△ABC中,,,且.
(1)求∠B的值;
(2)若點(diǎn)E,P分別在邊AB,BC上,且AE=4,AP⊥CE,求AP的長;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com