某企業(yè)主要生產(chǎn)甲、乙兩種品牌的空調(diào),由于受到空調(diào)在保修期內(nèi)維修費(fèi)等因素的影響,企業(yè)生產(chǎn)每臺(tái)空調(diào)的利潤(rùn)與該空調(diào)首次出現(xiàn)故障的時(shí)間有關(guān),甲、乙兩種品牌空調(diào)的保修期均為3年,現(xiàn)從該廠已售出的兩種品牌空調(diào)中各隨機(jī)抽取50臺(tái),統(tǒng)計(jì)數(shù)據(jù)如下:
品牌
首次出現(xiàn)故障時(shí)間
x年
0<x≤11<x≤22<x≤3x>30<x≤22<x≤3x>3
空調(diào)數(shù)量(臺(tái))124432345
每臺(tái)利潤(rùn)(千元)122.52.71.52.62.8
將頻率視為概率,解答下列問(wèn)題:
(Ⅰ)從該廠生產(chǎn)的甲品牌空調(diào)中隨機(jī)抽取一臺(tái),求首次出現(xiàn)故障發(fā)生在保修期內(nèi)的概率;
(Ⅱ)若該廠生產(chǎn)的空調(diào)均能售出,記生產(chǎn)一臺(tái)甲品牌空調(diào)的利潤(rùn)為X1,生產(chǎn)一臺(tái)乙品牌空調(diào)的利潤(rùn)為X2,分別求X1,X2的分布列;
(Ⅲ)該廠預(yù)計(jì)今后這兩種品牌空調(diào)銷量相當(dāng),但由于資金限制,只能生產(chǎn)其中一種品牌空調(diào),若從經(jīng)濟(jì)效益的角度考慮,你認(rèn)為應(yīng)該生產(chǎn)哪種品牌的空調(diào)?說(shuō)明理由.
考點(diǎn):離散型隨機(jī)變量的期望與方差,離散型隨機(jī)變量及其分布列
專題:概率與統(tǒng)計(jì)
分析:(Ⅰ)利用古典概型概率計(jì)算公式能求出甲品牌空調(diào)首次出現(xiàn)故障發(fā)生在保修期內(nèi)的概率.
(Ⅱ)依題意X1=1,2,2.5,2.7,分別求出相應(yīng)的概率,能求出X1的分布列;X2=1.5,2.6,2.8,分別求出相應(yīng)的概率,能求出X2的分布列.
(Ⅲ)由(Ⅱ)分別求出X1,X2的數(shù)學(xué)期,由E(X1)<E(X2),知應(yīng)生產(chǎn)乙品牌空調(diào).
解答: (本小題滿分13分)
解:(Ⅰ)設(shè)“甲品牌空調(diào)首次出現(xiàn)故障發(fā)生在保修期內(nèi)”為事件A,
P(A)=
1+2+4
50
=
7
50
.(4分)
(Ⅱ)依題意X1=1,2,2.5,2.7,
X1的分布列如下:
X1122.52.7
P
1
50
1
25
2
25
43
50
(7分)
依題意X2=1.5,2.6,2.8,
X2的分布列如下:
X21.52.62.8
P
1
25
3
50
9
10
(9分)
(Ⅲ)由(Ⅱ)得E(X1)=1×
1
50
+2×
1
25
+2.5×
2
25
+2.7×
43
50
=2.622
(千元);(11分)E(X2)=1.5×
1
25
+2.6×
3
50
+2.8×
9
10
=2.736
(千元).(12分)
所以E(X1)<E(X2),
故應(yīng)生產(chǎn)乙品牌空調(diào).(13分)
點(diǎn)評(píng):本題考查概率的求法,二查離散型隨要變量的分布列和數(shù)學(xué)期望的求法,解題時(shí)要認(rèn)真審題,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲乙兩臺(tái)機(jī)床同時(shí)生產(chǎn)一種零件,10天中,兩臺(tái)機(jī)床每天出的次品數(shù)分別是:
甲 4  1  0  2  2  1  3  1  2  4
乙 2  3  1  1  3  2  2  1  2  3
計(jì)算上述兩組數(shù)據(jù)的平均數(shù)和方差,從統(tǒng)計(jì)結(jié)果看,那臺(tái)機(jī)床的性能較好?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線y=2x+2上的動(dòng)點(diǎn)(an,an+1),n∈N*與定點(diǎn)(2,-3)所成直線的斜率為bn,且a1=3,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)證明:2<bn+1<bn≤11;
(3)證明:
1
b1-2
+
1
b2-2
+
1
b3-2
+…
1
bn-2
<2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若母線長(zhǎng)是4的圓錐的軸截面的面積是8,求圓錐的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,直角梯形ABCD與等腰直角三角形ABE所在的平面互相垂直.AB∥CD,AB⊥BC,AB=2CD=2BC=2,EA⊥EB.
(Ⅰ)求直線EC與平面ABE所成角的正切值;
(Ⅱ)線段EA上是否存在點(diǎn)F,使EC∥平面FBD?存在請(qǐng)確定具體位置,不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=x+5+
-x2-2x+4
,求其值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a>0).
(Ⅰ)(i)若b=-2,且f(x)在(1,+∞)上為單調(diào)遞增函數(shù),求實(shí)數(shù)a的取值范圍;
(ii)若b=-1,c=1,當(dāng)x∈[0,1]時(shí),|f(x)|的最大值為1,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若f(0)≥1,f(1)≥1,f(x)=0的有兩個(gè)小于1的不等正根,求a的最小正整數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐P-ABCD中,PA⊥平面ABCD,AD∥BC,PA=AB=AD=2BC=2,∠BAD=θ,E是棱PD的中點(diǎn).
(Ⅰ)若θ=60°,求證:AE⊥平面PCD;
(Ⅱ)求θ的值,使二面角P-CD-A的平面角最小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(C)已知函數(shù)f(x)=|2x+3|+|2x-1|.
(Ⅰ)求不等式f(x)≤6的解集;
(Ⅱ)若關(guān)于x的不等式f(x)<|m-1|的解集非空,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案