經(jīng)調(diào)查統(tǒng)計,某種型號的汽車在勻速行駛中,每小時的耗油量(升)關(guān)于行駛速度(千米/時)的函數(shù)可表示為.已知甲、乙兩地相距千米,在勻速行駛速度不超過千米/時的條件下,該種型號的汽車從甲地 到乙地的耗油量記為(升).
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)討論函數(shù)的單調(diào)性,當(dāng)為多少時,耗油量為最少?最少為多少升?
(Ⅰ);(Ⅱ)當(dāng),從甲地到乙地的耗油量最少,最少耗油量為7升.
解析試題分析:(Ⅰ)由題意得,汽車從甲地到乙地行駛了小時,又因為每小時的耗油量(升)關(guān)于行駛速度(千米/時)的函數(shù)可表示為,二者相乘即得.(Ⅱ)由(Ⅰ)有,,利用導(dǎo)數(shù)可得其最小值.
試題解析:(Ⅰ)由題意得,汽車從甲地到乙地行駛了小時, (2分)
. (5分)
(Ⅱ)由(Ⅰ)有,. (8分)
令,得,. (9分)
①當(dāng)時,,是減函數(shù); (10分)
②當(dāng)時,,是增函數(shù); (11分)
當(dāng),即汽車的行駛速度為(千米/時)時,從甲地到乙地的耗油量為最少,最少耗油量為(升). (12分)
考點(diǎn):函數(shù)及導(dǎo)數(shù)的應(yīng)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若曲線經(jīng)過點(diǎn),曲線在點(diǎn)處的切線與直線垂直,求的值;
(2)在(1)的條件下,試求函數(shù)(為實(shí)常數(shù),)的極大值與極小值之差;
(3)若在區(qū)間內(nèi)存在兩個不同的極值點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=,x∈(1,+∞).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)函數(shù)f(x)在區(qū)間[2,+∞)上是否存在最小值,若存在,求出最小值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
(Ⅰ)當(dāng)時,求的單調(diào)區(qū)間;
(Ⅱ)若當(dāng)時,恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中.
(1)當(dāng)時,求函數(shù)在處的切線方程;
(2)若函數(shù)在區(qū)間(1,2)上不是單調(diào)函數(shù),試求的取值范圍;
(3)已知,如果存在,使得函數(shù)在處取得最小值,試求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)當(dāng)時,的圖象在點(diǎn)處的切線平行于直線,求的值;
(2)當(dāng)時,在點(diǎn)處有極值,為坐標(biāo)原點(diǎn),若三點(diǎn)共線,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)若是上是增函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅱ)證明:當(dāng)a≥1時,證明不等式≤x+1對x∈R恒成立;
(Ⅲ)對于在(0,1)中的任一個常數(shù)a,試探究是否存在x0>0,使得>x0+1成立?如果存在,請求出符合條件的一個x0;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中是自然對數(shù)的底數(shù),.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時,試確定函數(shù)的零點(diǎn)個數(shù),并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com