一個口袋中有紅球3個,白球4個.
(Ⅰ)從中不放回地摸球,每次摸2個,摸到的2個球中至少有1個紅球則中獎,求摸2次恰好第2次中獎的概率;
(Ⅱ)每次同時摸2個,并放回,摸到的2個球中至少有1個紅球則中獎,連續(xù)摸4次,求中獎次數(shù)X的數(shù)學(xué)期望E(X).
(Ⅰ);(Ⅱ),

試題分析:(Ⅰ)利用排列組合、古典概率公式可求;(Ⅱ)按照分布列的取值情況求對應(yīng)的概率即可.
試題解析:(Ⅰ) 設(shè)“摸2次恰好第2次中獎”為事件A,則

所以,摸2次恰好第2次中獎的概率為.            5分
(Ⅱ) 設(shè)“每次同時摸2個,恰好中獎”為事件B,則

隨機(jī)變量X的所有可能取值為1,2,3,4.                     6分
,        
,      , 10分
所以隨機(jī)變量X的分布列是
X
1
2
3
4
P




隨機(jī)變量X的數(shù)學(xué)期望.     14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某班50名學(xué)生在一次百米測試中,成績?nèi)拷橛?3秒與18秒之間,將測試結(jié)果按如下方式分成五組:每一組;第二組,……,第五組.右圖是按上述分組方法得到的頻率分布直方圖.

(I)若成績大于或等于14秒且小于16秒認(rèn)為良好,求該班在這次百米測試中成績良好的人數(shù);
(II)設(shè)表示該班某兩位同學(xué)的百米測試成績,且已知,求事件“”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一河南旅游團(tuán)到安徽旅游.看到安徽有很多特色食品,其中水果類較有名氣的有:懷遠(yuǎn)石榴、碭山梨、徽州青棗等19種,點(diǎn)心類較有名氣的有:一品玉帶糕、徽墨酥、八公山大救駕等38種,小吃類較有名氣的有:符離集燒雞、無為熏鴨、合肥龍蝦等57種.該旅游團(tuán)的游客決定按分層抽樣的方法從這些特產(chǎn)中買6種帶給親朋品嘗.
(Ⅰ)求應(yīng)從水果類、點(diǎn)心類、小吃類中分別買回的種數(shù);
(Ⅱ)若某游客從買回的6種特產(chǎn)中隨機(jī)抽取2種送給自己的父母,
①列出所有可能的抽取結(jié)果;
②求抽取的2種特產(chǎn)均為小吃的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

連擲兩次骰子得到的點(diǎn)數(shù)分別為m和n,若記向量a=(m,n)與向量b=(1,-2)的夾角為θ,則θ為銳角的概率是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

將一枚均勻的硬幣拋擲6次,則正面出現(xiàn)的次數(shù)比反面出現(xiàn)的次數(shù)多的概率為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

先后拋擲2枚均勻的一分、二分的硬幣,觀察落地后硬幣的正、反面情況,則下列事件包含3個基本事件的是 (  )
A.“至少一枚硬幣正面向上”;
B.“只有一枚硬幣正面向上”;
C.“兩枚硬幣都是正面向上”;
D.“兩枚硬幣一枚正面向上,另一枚反面向上”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

“十一”期間,邢臺市通過隨機(jī)詢問100名性別不同的居民是否能做到‘光盤’行動,得到如下的列聯(lián)表,參照附表,得到的正確的結(jié)論是(   )
 
做不到“光盤”
能做到“光盤”

45
10

30
15
 

0.10
0.05
0.025
k
2.706
3.841
5.024

A.在犯錯誤的概率不超過1%的前提下,認(rèn)為“該市居民能否做到‘光盤’與性別有關(guān)”
B.在犯錯誤的概率不超過1%的前提下,認(rèn)為“該市居民能否做到‘光盤’與性別無關(guān)”
C.有90%以上的把握認(rèn)為“該市居民能否做到‘光盤’與性別有關(guān)”
D.有90%以上的把握認(rèn)為“該市居民能否做到‘光盤’與性別無關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某射手每次射擊擊中目標(biāo)的概率均為,且每次射擊的結(jié)果互不影響
(I)假設(shè)這名射手射擊3次,求至少2次擊中目標(biāo)的概率
(II)假設(shè)這名射手射擊3次,每次擊中目標(biāo)10分,未擊中目標(biāo)得0分,在3次射擊中,若有兩次連續(xù)擊中目標(biāo),而另外一次未擊中目標(biāo),則額外加5分;若3次全部擊中,則額外加10分。用隨機(jī)變量§表示射手射擊3次后的總得分,求§的分布列和數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某集團(tuán)公司舉辦一次募捐愛心演出,有1000人參加,每人一張門票,每張100元。在演出過程中穿插抽獎活動,第一輪抽獎從這1000張票根中隨機(jī)抽取10張,其持有者獲得價值1000元的獎品,并參加第二輪抽獎活動。第二輪抽獎由第一輪獲獎?wù)擢?dú)立操作按鈕,電腦隨機(jī)產(chǎn)生兩個數(shù)),滿足電腦顯示“中獎”,且抽獎?wù)攉@得特等獎獎金;否則電腦顯示“謝謝”,則不中獎。
(1)已知小明在第一輪抽獎中被抽中,求小明在第二輪抽獎中獲獎的概率;
(2)若該集團(tuán)公司望在此次活動中至少獲得61875元的收益,則特等獎獎金最高可設(shè)置成多少元?

查看答案和解析>>

同步練習(xí)冊答案