【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的最小值;
(2)若函數(shù)在上單調(diào),求實(shí)數(shù)的取值范圍.
【答案】(1)1;(2) .
【解析】試題分析:
(1)由題意求得導(dǎo)函數(shù),結(jié)合函數(shù)的單調(diào)性可得函數(shù)的最小值為f(1)=1;
(2)首先求解導(dǎo)函數(shù),然后分類(lèi)討論函數(shù)單調(diào)遞增和單調(diào)遞減兩種情況可得實(shí)數(shù)的取值范圍是.
試題解析:
(1)由題意知,函數(shù)的定義域?yàn)?/span>(0,+∞),
當(dāng)a=2時(shí),f'(x)=2x-,
由f'(x)<0得0<x<1,故f(x)的單調(diào)遞減區(qū)間是(0,1).
由f'(x)>0得x>1,故f(x)的單調(diào)遞增區(qū)間是(1,+)
所以函數(shù)的最小值為f(1)=1
(2)由題意得g'(x)=2x-,函數(shù)g(x)在[1,+∞)上是單調(diào)函數(shù).
①若g(x)為[1,+∞)上的單調(diào)增函數(shù),則g'(x)≥0在[1,+∞)上恒成立,
即a2x2在[1,+∞)上恒成立,
設(shè)φ(x)=2x2,
∵φ(x)在[1,+∞)上單調(diào)遞增,∴φ(x)min=φ(1)=0,∴a≤0.
②若g(x)為[1,+∞)上的單調(diào)減函數(shù),則g'(x)≤0即a2x2由①知φ(x)=2x2在[1,+∞)上單調(diào)增,x趨向于無(wú)窮大時(shí)φ(x)趨向于無(wú)窮大,φ(x)無(wú)最大值,故不可能.
綜上所述,a的取值范圍為a≤0.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,D、E分別是△ABC的三等分點(diǎn),設(shè) = , = ,∠BAC= .
(1)用 , 分別表示 , ;
(2)若 =15,| |=3 ,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知方程(m2﹣2m﹣3)x+(2m2+m﹣1)y+5﹣2m=0(m∈R).
(1)求方程表示一條直線的條件;
(2)當(dāng)m為何值時(shí),方程表示的直線與x軸垂直;
(3)若方程表示的直線在兩坐標(biāo)軸上的截距相等,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品均需用A,B兩種原料,已知生產(chǎn)1噸每種產(chǎn)品所需原料及每天原料的可用限額如表所示,如果生產(chǎn)1噸甲、乙產(chǎn)品可獲得利潤(rùn)分別為4萬(wàn)元、3萬(wàn)元,則該企業(yè)每天可獲得最大利潤(rùn)為萬(wàn)元
甲 | 乙 | 原料限額 | |
A(噸) | 2 | 5 | 10 |
B(噸) | 6 | 3 | 18 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中真命題為( )
A.過(guò)點(diǎn)P(x0 , y0)的直線都可表示為y﹣y0=k(x﹣x0)
B.過(guò)兩點(diǎn)(x1 , y1),(x2 , y2)的直線都可表示為(x﹣x1)(y2﹣y1)=(y﹣y1)(x2﹣x1)
C.過(guò)點(diǎn)(0,b)的所有直線都可表示為y=kx+b
D.不過(guò)原點(diǎn)的所有直線都可表示為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某青年教師有一專(zhuān)項(xiàng)課題是進(jìn)行“學(xué)生數(shù)學(xué)成績(jī)與物理成績(jī)的關(guān)系”的研究,他調(diào)查了某中學(xué)高二年級(jí)800名學(xué)生上學(xué)期期末考試的數(shù)學(xué)和物理成績(jī),把成績(jī)按優(yōu)秀和不優(yōu)秀分類(lèi)得到的結(jié)果是:數(shù)學(xué)和物理都優(yōu)秀的有60人,數(shù)學(xué)成績(jī)優(yōu)秀但物理不優(yōu)秀的有140人,物理成績(jī)優(yōu)秀但數(shù)學(xué)不優(yōu)秀的有60人. 附:
P(K2≥k0) | 0.100 | 0.050 | 0.010 |
k0 | 6.635 | 7.879 | 10.828 |
K2= .
(1)能否在犯錯(cuò)概率不超過(guò)0.001的前提下認(rèn)為該中學(xué)學(xué)生的數(shù)學(xué)成績(jī)與物理成績(jī)有關(guān)?
(2)將上述調(diào)查所得到的頻率視為概率,從全體高二年級(jí)學(xué)生成績(jī)中,有放回地隨機(jī)抽取4名學(xué)生的成績(jī),記抽取的4份成績(jī)中數(shù)學(xué)、物理兩科成績(jī)恰有一科優(yōu)秀的份數(shù)為X,求X的分布列和期望E(X).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了讓學(xué)生了解環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),某中學(xué)舉行了一次“環(huán)保知識(shí)競(jìng)賽”,共有900名學(xué)生參加了這次競(jìng)賽.為了解本次競(jìng)賽的成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì).請(qǐng)你根據(jù)尚未完成并有局部污損的頻率分布表和頻率分布直方圖(如圖所示),解答下列問(wèn)題:
分組 | 頻數(shù) | 頻率 |
50.5~60.5 | 4 | 0.08 |
60.5~70.5 | 0.16 | |
70.5~80.5 | 10 | |
80.5~90.5 | 16 | 0.32 |
90.5~100.5 | ||
合計(jì) | 50 |
(1)填充頻率分布表中的空格;
(2)補(bǔ)全頻率分布直方圖;
(3)若成績(jī)?cè)?0.5~90.5分的學(xué)生可以獲得二等獎(jiǎng),問(wèn)獲得二等獎(jiǎng)的學(xué)生約為多少人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)命題p:不等式x﹣x2≤a對(duì)x≥1恒成立,命題q:關(guān)于x的方程x2﹣ax+1=0在R上有解.
(1)若p為假命題,求實(shí)數(shù)a的取值范圍;
(2)若“p∧q”為假命題,“p∨q”為真命題,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com