【題目】數(shù)學(xué)家歐拉在1765年發(fā)現(xiàn),任意三角形的外心、重心、垂心位于同一條直線上,這條直線稱為歐拉線已知的頂點,若其歐拉線的方程為,則頂點的坐標(biāo)為( )

A. B. C. D.

【答案】A

【解析】

設(shè)出點C的坐標(biāo),由重心坐標(biāo)公式求得重心,代入歐拉線得一方程,求出AB的垂直平分線,和歐拉線方程聯(lián)立求得三角形的外心,由外心到兩個頂點的距離相等得另一方程,兩方程聯(lián)立求得點C的坐標(biāo)

設(shè)C(m,n),由重心坐標(biāo)公式得,三角形ABC的重心為代入歐拉線方程得:整理得:m-n+4=0

AB的中點為(1,2), AB的中垂線方程為

x-2y+3=0.聯(lián)立 解得

∴△ABC的外心為(-1,1).

則(m+1)2+(n-1)2=32+12=10,整理得:m2+n2+2m-2n=8

聯(lián)立①②得:m=-4,n=0m=0,n=4.

當(dāng)m=0,n=4B,C重合,舍去.∴頂點C的坐標(biāo)是(-4,0).故選A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=(1﹣x2)ex
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)當(dāng)x≥0時,f(x)≤ax+1,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知△ABC的面積為 .(12分)
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】共享單車是指由企業(yè)在校園、公交站點、商業(yè)區(qū)、公共服務(wù)區(qū)等場所提供的自行車單車共享服務(wù),由于其依托“互聯(lián)網(wǎng)”,符合“低碳出行”的理念,已越來越多地引起了人們的關(guān)注某部門為了對該城市共享單車加強監(jiān)管,隨機選取了100人就該城市共享單車的推行情況進行問卷調(diào)查,并將問卷中的這100人根據(jù)其滿意度評分值百分制按照,,,分成5組,制成如圖所示頻率分直方圖.

求圖中x的值;

求這組數(shù)據(jù)的平均數(shù)和中位數(shù);

已知滿意度評分值在內(nèi)的男生數(shù)與女生數(shù)的比為,若在滿意度評分值為的人中隨機抽取2人進行座談,求恰有1名女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=x2+px+q.求證:

(1)f(1)+f(3)-2f(2)=2;

(2)|f(1)|,|f(2)|,|f(3)|中至少有一個不小于.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C上的動點P)滿足到定點A(-1,0)的距離與到定點B1,0)距離之比為

(1)求曲線C的方程。

(2)過點M(1,2)的直線與曲線C交于兩點M、N,若|MN|=4,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)曲線與直線有兩個相異的交點時,實數(shù)的取值范圍是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .若存在實數(shù)k使得函數(shù)f(x)的值域為[﹣1,1],則實數(shù)a的取值范圍是(
A.
B.
C.[1,3]
D.[2,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)g(x)=ax﹣ ﹣5lnx,其中a∈R.
(1)若g(x)在其定義域內(nèi)為增函數(shù),求正實數(shù)a的取值范圍;
(2)設(shè)函數(shù)h(x)=x2﹣mx+4,當(dāng)a=2時,若x1∈(0,1),x2∈[1,2],總有g(shù)(x1)≥h(x2)成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案