在△ABC中,∠BAC=90°,P為△ABC所在平面外一點(diǎn),且PA=PB=PC,則平面PBC與平面ABC的關(guān)系是________.

垂直
分析:根據(jù)P為平面ABC外一點(diǎn)且PA=PB=PC可知點(diǎn)P在底面上的投影必經(jīng)過(guò)BC中點(diǎn),從而推出平面PBC與平面ABC的關(guān)系.
解答:因?yàn)镻在ABC平面外,則P在平面ABC上的射影是△ABC的外心,
因?yàn)椤螧AC=90°,所有三角形是直角三角形,又PA=PB=PC,
所以P在平面ABC的射影是BC的中點(diǎn),
因此平面PBC垂直于平面ABC.
故答案為:垂直.
點(diǎn)評(píng):本題主要考查三角形的內(nèi)心以及二面角的平面角及求法,解決本題的關(guān)鍵就是理解點(diǎn)P在底面上的投影是底面三角形的內(nèi)心,同時(shí)考查了空間想象能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,|
BA
|=|
BC
|
,延長(zhǎng)CB到D,使
AC
AD
,若
AD
AB
AC
,則λ-μ的值是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,
BA
BC
=3,S△ABC∈[
3
2
,
3
3
2
]
,則∠B的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題:
(1)若函數(shù)f(x)=lg(x+
x2+a
),為奇函數(shù),則a=1;
(2)函數(shù)f(x)=|sinx|的周期T=π;
(3)已知
a
=(sinθ,
1+cosθ
),
b
=(1,
1-cosθ
)
,其中θ∈(π,
2
),則
a
b

(4)在△ABC中,
BA
=a,
AC
=b,若a•b<0,則△ABC是鈍角三角形
( 5)O是△ABC所在平面上一定點(diǎn),動(dòng)點(diǎn)P滿足:
OP
=
OA
+λ(
AB
sinC
+
AC
sinB
)
,λ∈(0,+∞),則直線AP一定通過(guò)△ABC的內(nèi)心.
以上命題為真命題的是
(1)(2)(3)(5)
(1)(2)(3)(5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中
a+b
a-b
等于( 。
A、
sin(A+B)
sin(A-B)
B、
tan(A+B)
tan(A-B)
C、
sin
A+B
2
sin
A-B
2
D、
tan
A+B
2
tan
A-B
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在△ABC中,
BA
BC
=3,S△ABC∈[
3
2
3
3
2
]
,則∠B的取值范圍是( 。
A.[
π
4
π
3
]
B.[
π
6
,
π
4
]
C.[
π
6
π
3
]
D.[
π
3
,
π
2
]

查看答案和解析>>

同步練習(xí)冊(cè)答案