【題目】已知函數(shù)

1)當時,求函數(shù)的單調(diào)增區(qū)間;

2)當時,求函數(shù)在區(qū)間上的最大值;

3)對任意,恒有,求實數(shù)的取值范圍.

【答案】(1)函數(shù)的單調(diào)遞增區(qū)間為 , (2)函數(shù)取得最大值 (3)

【解析】

1)將代入函數(shù),去掉絕對值得到分段函數(shù),然后分別求導(dǎo),利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間.

2,,對函數(shù)求導(dǎo),判斷單調(diào)性,根據(jù)單調(diào)性即可得出函數(shù)在區(qū)間上的最大值.

3)由(1)(2)得,,分情況討論、時函數(shù)的單調(diào)性,從而得出實數(shù)的取值范圍.

1)當時, ,

時,則,令,解得;

時,則恒成立,所以,

所以函數(shù)的單調(diào)遞增區(qū)間為 ,

2)若,當時, ,

,解得

列表如下:

時,函數(shù)取得最大值

3)由(1)(2)得,

①當時,即時,

,即

因為上單調(diào)遞增,

所以當時, 取得最小值,

所以,解得,又,所以

②當時,

時,,即,

矛盾,

所以,實數(shù)的取值范圍為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C:+=1(a>b>0)的離心率為,直線l:x+2y=4與橢圓有且只有一個交點T.

(I)求橢圓C的方程和點T的坐標;

)O為坐標原點,與OT平行的直線l′與橢圓C交于不同的兩點A,B,直線l′與直線l交于點P,試判斷是否為定值,若是請求出定值,若不是請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本小題滿分13分)

工作人員需進入核電站完成某項具有高輻射危險的任務(wù),每次只派一個人進去,且每個人只派一次,工作時間不超過10分鐘,如果有一個人10分鐘內(nèi)不能完成任務(wù)則撤出,再派下一個人.現(xiàn)在一共只有甲、乙、丙三個人可派,他們各自能完成任務(wù)的概率分別,假設(shè)互不相等,且假定各人能否完成任務(wù)的事件相互獨立.

1)如果按甲在先,乙次之,丙最后的順序派人,求任務(wù)能被完成的概率.若改變?nèi)齻人被派出的先后順序,任務(wù)能被完成的概率是否發(fā)生變化?

2)若按某指定順序派人,這三個人各自能完成任務(wù)的概率依次為,其中的一個排列,求所需派出人員數(shù)目的分布列和均值(數(shù)字期望);

3)假定,試分析以怎樣的先后順序派出人員,可使所需派出的人員數(shù)目的均值(數(shù)字期望)達到最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)積極響應(yīng)國家“科技創(chuàng)新”的號召,大力研發(fā)人工智能產(chǎn)品,為了對一批新研發(fā)的產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到一組銷售數(shù)據(jù),如下表所示:

試銷單價(百元)

1

2

3

4

5

6

產(chǎn)品銷量(件)

91

86

78

73

70

附:參考公式:,

參考數(shù)據(jù):,,.

1)求的值;

2)已知變量具有線性相關(guān)關(guān)系,求產(chǎn)品銷量(件)關(guān)于試銷單價(百元)的線性回歸方程(計算結(jié)果精確到整數(shù)位);

3)用表示用正確的線性回歸方程得到的與對應(yīng)的產(chǎn)品銷量的估計值.當銷售數(shù)據(jù)的殘差的絕對值時,則將銷售數(shù)據(jù)稱為一個“有效數(shù)據(jù)”.現(xiàn)從這6組銷售數(shù)據(jù)中任取2組,求抽取的2組銷售數(shù)據(jù)都是“有效數(shù)據(jù)”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題為真命題的個數(shù)是( )(其中為無理數(shù))

;②;③.

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)質(zhì)量檢驗員為了檢測生產(chǎn)線上零件的質(zhì)量情況,從生產(chǎn)線上隨機抽取了個零件進行測量,根據(jù)所測量的零件尺寸(單位:mm),得到如下的頻率分布直方圖:

1)根據(jù)頻率分布直方圖,求這個零件尺寸的中位數(shù)(結(jié)果精確到);

2)若從這個零件中尺寸位于之外的零件中隨機抽取個,設(shè)表示尺寸在上的零件個數(shù),求的分布列及數(shù)學(xué)期望;

3)已知尺寸在上的零件為一等品,否則為二等品,將這個零件尺寸的樣本頻率視為概率. 現(xiàn)對生產(chǎn)線上生產(chǎn)的零件進行成箱包裝出售,每箱. 企業(yè)在交付買家之前需要決策是否對每箱的所有零件進行檢驗,已知每個零件的檢驗費用為. 若檢驗,則將檢驗出的二等品更換為一等品;若不檢驗,如果有二等品進入買家手中,企業(yè)要向買家對每個二等品支付元的賠償費用. 現(xiàn)對一箱零件隨機抽檢了個,結(jié)果有個二等品,以整箱檢驗費用與賠償費用之和的期望值作為決策依據(jù),該企業(yè)是否對該箱余下的所有零件進行檢驗?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,,,,,為線段的中點.

(Ⅰ)求直線與平面所成角的余弦值;

(Ⅱ)求二面角的大;

(Ⅲ)若在段上,且直線與平面相交,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的函數(shù),滿足,,若,則有( )

A. B. C. D. 不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過點作一直線與雙曲線相交于兩點,若中點,則( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案