設(shè)f(x)=ax2+bx+c,當(dāng)|x|≤1時(shí),總有|f(x)|≤1.

求證:|f(2)|≤7.

答案:
解析:

  證明:∵|x|≤1時(shí),總有|f(x)|≤1.

  ∴

  又∵f(0)=c,f(-1)=a-b+c,f(1)=a+b+c,

  解之得

  ∴f(2)=2[f(1)+f(-1)]-4f(0)+f(1)-f(-1)+f(0)=3f(1)+f(-1)-3f(0)

  從而得-7≤3f(1)+f(-1)-3f(0)≤7,也就是|f(2)|≤7.

  分析:由f(2)=4a+2b+c,用f(1)、f(-1)、f(0)表示a、b、c,進(jìn)一步由f(-1)、f(1)、f(0)的范圍確定f(2)的范圍.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:志鴻系列訓(xùn)練必修一數(shù)學(xué)北師版 題型:013

設(shè)f(x)=ax2+bx+c(a≠0),若f(α)·f(β)<0(αβ),則f(x)=0在(α,β)內(nèi)的實(shí)根的個(gè)數(shù)為

[  ]

A.0

B.1

C.2

D.無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:高中數(shù)學(xué)全解題庫(kù)(國(guó)標(biāo)蘇教版·必修4、必修5) 蘇教版 題型:044

設(shè)f(x)=ax2+bx,且1≤f(-1)≤2,2≤f(1)≤4,求f(-2)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:設(shè)計(jì)必修五數(shù)學(xué)蘇教版 蘇教版 題型:044

設(shè)f(x)=ax2bxc,若,問(wèn)是否存在a、b、cR,使得不等式x2f(x)≤2x2+2x對(duì)一切實(shí)數(shù)x都成立?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

設(shè)f(x)=ax2+bx+c(a≠0),若f(α)·f(β)<0(α<β),則f(x)=0在(α,β)內(nèi)的實(shí)根的個(gè)數(shù)為


  1. A.
    0
  2. B.
    1
  3. C.
    2
  4. D.
    無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=ax2bxc,當(dāng)|x|≤1時(shí),總有|f(x)|≤1,求證:|f(2)|≤7.

查看答案和解析>>

同步練習(xí)冊(cè)答案