在平面直角坐標(biāo)系xoy中,直線l與拋物線y2=4x相交于不同的A、B兩點(diǎn).
(Ⅰ)如果直線l過(guò)拋物線的焦點(diǎn),求
OA
OB
的值;
(Ⅱ)如果
OA
OB
=-4,證明直線l必過(guò)一定點(diǎn),并求出該定點(diǎn).
分析:(Ⅰ)根據(jù)拋物線的方程得到焦點(diǎn)的坐標(biāo),設(shè)出直線與拋物線的兩個(gè)交點(diǎn)和直線方程,是直線的方程與拋物線方程聯(lián)立,得到關(guān)于y的一元二次方程,根據(jù)根與系數(shù)的關(guān)系,表達(dá)出兩個(gè)向量的數(shù)量積.
(Ⅱ)設(shè)出直線的方程,同拋物線方程聯(lián)立,得到關(guān)于y的一元二次方程,根據(jù)根與系數(shù)的關(guān)系表示出數(shù)量積,根據(jù)數(shù)量積等于-4,做出數(shù)量積表示式中的b的值,即得到定點(diǎn)的坐標(biāo).
解答:解:(Ⅰ)由題意:拋物線焦點(diǎn)為(1,0)
設(shè)l:x=ty+1代入拋物線y2=4x消去x得,
y2-4ty-4=0,設(shè)A(x1,y1),B(x2,y2
則y1+y2=4t,y1y2=-4
OA
OB
=x1x2+y1y2=(ty1+1)(ty2+1)+y1y2
=t2y1y2+t(y1+y2)+1+y1y2
=-4t2+4t2+1-4=-3.

(Ⅱ)設(shè)l:x=ty+b代入拋物線y2=4x,消去x得
y2-4ty-4b=0設(shè)A(x1,y1),B(x2,y2
則y1+y2=4t,y1y2=-4b
OA
OB
=x1x2+y1y2
=(ty1+b)(ty2+b)+y1y2
=t2y1y2+bt(y1+y2)+b2+y1y2
=-4bt2+4bt2+b2-4b=b2-4b
令b2-4b=-4,∴b2-4b+4=0∴b=2.
∴直線l過(guò)定點(diǎn)(2,0).
點(diǎn)評(píng):從最近幾年命題來(lái)看,向量為每年必考考點(diǎn),都是以選擇題呈現(xiàn),從2006到現(xiàn)在幾乎各省都對(duì)向量的運(yùn)算進(jìn)行了考查,主要考查向量的數(shù)量積的運(yùn)算,結(jié)合最近幾年的高考題,向量同解析幾何,三角函數(shù),立體幾何結(jié)合起來(lái)考的比較多.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xoy中,已知圓心在直線y=x+4上,半徑為2
2
的圓C經(jīng)過(guò)坐標(biāo)原點(diǎn)O,橢圓
x2
a2
+
y2
9
=1(a>0)
與圓C的一個(gè)交點(diǎn)到橢圓兩焦點(diǎn)的距離之和為10.
(1)求圓C的方程;
(2)若F為橢圓的右焦點(diǎn),點(diǎn)P在圓C上,且滿足PF=4,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點(diǎn).若點(diǎn)A的橫坐標(biāo)是
3
5
,點(diǎn)B的縱坐標(biāo)是
12
13
,則sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,若焦點(diǎn)在x軸的橢圓
x2
m
+
y2
3
=1
的離心率為
1
2
,則m的值為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•泰州三模)選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.設(shè)直線AC與BD的交點(diǎn)為P,求動(dòng)點(diǎn)P的軌跡的參數(shù)方程(以t為參數(shù))及普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•東莞一模)在平面直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點(diǎn)為F1(-1,0),且橢圓C的離心率e=
1
2

(1)求橢圓C的方程;
(2)設(shè)橢圓C的上下頂點(diǎn)分別為A1,A2,Q是橢圓C上異于A1,A2的任一點(diǎn),直線QA1,QA2分別交x軸于點(diǎn)S,T,證明:|OS|•|OT|為定值,并求出該定值;
(3)在橢圓C上,是否存在點(diǎn)M(m,n),使得直線l:mx+ny=2與圓O:x2+y2=
16
7
相交于不同的兩點(diǎn)A、B,且△OAB的面積最大?若存在,求出點(diǎn)M的坐標(biāo)及對(duì)應(yīng)的△OAB的面積;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案