【題目】已知集合P={x|x2>2},Q={0,1,2,3},則(RP)∩Q=( )
A.{0,1}
B.{0}
C.{2,3}
D.{1,2,3}
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分16分)已知函數(shù)在處的切線方程為
(1)若= ,求證:曲線上的任意一點處的切線與直線和直線
圍成的三角形面積為定值;
(2)若,是否存在實數(shù),使得對于定義域內的任意都成立;
(3)在(2)的條件下,若方程有三個解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求在區(qū)間的最值;
(2)求實數(shù)的取值范圍,使在區(qū)間上是單調函數(shù);
(3)當時,求的單調區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a,b是正實數(shù),設函數(shù)f(x)=xlnx,g(x)=﹣a+xlnb.
(Ⅰ)設h(x)=f(x)﹣g(x),求h(x)的單調區(qū)間;
(Ⅱ)若存在x0 , 使x0∈[ , ]且f(x0)≤g(x0)成立,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0),其部分圖象如圖所示,點P,Q分別為圖象上相鄰的最高點與最低點,R是圖象與x軸的交點,若P點的橫坐標為 ,f( )= ,PR⊥QR,則函數(shù)f(x)的解析式可以是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線y2=4x的焦點為F,點A、B在拋物線上,且∠AFB=90°,弦AB中點M在準線l上的射影為M1 , 則 的最大值為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直三棱柱A1B1C1﹣ABC中, ,AB=AC=AA1=1,已知G和E分別為A1B1和CC1的中點,D與F分別為線段AC和AB上的動點(不包括端點),若GD⊥EF,則線段DF的長度的取值范圍為( )
A.[ ,1)
B.[ ,1]
C.( ,1)
D.[ ,1)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com