精英家教網 > 高中數學 > 題目詳情

設h(x)=x+,x∈[,5],其中m是不等于零的常數,

(1)m=1時,直接寫出h(x)的值域

(2)求h(x)的單調遞增區(qū)間;

(3)已知函數f(x)(x∈[a,b]),定義:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函數f(x)在D上的最小值,max{f(x)|x∈D}表示函數f(x)在D上的最大值.例如:f(x)=cosx,x∈[0,π],則f1(x)=cosx,x∈[0,π],f2(x)=1,x∈[0,π],當m=1時,|h1(x)-h(huán)2(x)|≤n恒成立,求n的取值范圍;

練習冊系列答案
相關習題

科目:高中數學 來源:上海市奉賢區(qū)2011屆高三12月調研測試數學理科試題 題型:044

設h(x)=,x∈[,5],其中m是不等于零的常數,

(1)寫出h(4x)的定義域;

(2)求h(x)的單調遞增區(qū)間;

(3)已知函數f(x)(x∈[a,b]),定義:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函數f(x)在D上的最小值,max{f(x)|x∈D}表示函數f(x)在D上的最大值.例如:f(x)=cosx,x∈[0,π],則f1(x)=cosx,x∈[0,π],f2(x)=1,x∈[0,π],當m=1時,設,不等式t≤M1(x)-M2(x)≤n恒成立,求t,n的取值范圍;

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=loga(1+x),g(x)=loga(1-x),其中(a>0且a≠1),設h(x)=f(x)-g(x).

(1)求函數h(x)的定義域;

(2)判斷h(x)的奇偶性,并說明理由;

(3)若f(3)=2,求使h(x)>0成立的x的集合.

 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=loga(1+x),g(x)=loga(1-x),其中(a>0且a≠1),設h(x)=f(x)-g(x).

(1)求函數h(x)的定義域;

(2)判斷h(x)的奇偶性,并說明理由;

(3)若f(3)=2,求使h(x)>0成立的x的集合.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=loga(1+x),g(x)=loga(1-x),其中(a>0且a≠1),設h(x)=f(x)-g(x).

(1)求函數h(x)的定義域;

(2)判斷h(x)的奇偶性,并說明理由;

(3)若f(3)=2,求使h(x)>0成立的x的集合.

查看答案和解析>>

同步練習冊答案