12.7名志愿者中有3名女生,從其中安排6人在周六、周日兩天參加社區(qū)公益活動(dòng),若每天安排3人,則兩天中恰好各有1名女生的概率為$\frac{9}{35}$(用數(shù)值表示).

分析 先求出基本事件總數(shù)n=C76×$\frac{{C}_{6}^{3}{C}_{3}^{3}}{{A}_{2}^{2}}$×A22=140,再求出兩天中恰好各有1名女生,包含的基本事件個(gè)數(shù)m=${C}_{4}^{4}{C}_{3}^{2}×\frac{{C}_{4}^{2}{C}_{2}^{1}}{{A}_{2}^{2}}×{A}_{2}^{2}$=36,由此能求出兩天中恰好各有1名女生的概率.

解答 解:先從7人中任取6人,共有C76種不同的取法.
再把6人分成兩部分,每部分3人,共有$\frac{{C}_{6}^{3}{C}_{3}^{3}}{{A}_{2}^{2}}$種分法.
最后排在周六和周日兩天,有A22種排法,
∴7名志愿者中有3名女生,從其中安排6人在周六、周日兩天參加社區(qū)公益活動(dòng),每天安排3人,
基本事件總數(shù)n=C76×$\frac{{C}_{6}^{3}{C}_{3}^{3}}{{A}_{2}^{2}}$×A22=140種.
兩天中恰好各有1名女生,包含的基本事件個(gè)數(shù):
m=${C}_{4}^{4}{C}_{3}^{2}×\frac{{C}_{4}^{2}{C}_{2}^{1}}{{A}_{2}^{2}}×{A}_{2}^{2}$=36種,
∴兩天中恰好各有1名女生的概率p=$\frac{m}{n}$=$\frac{36}{140}$=$\frac{9}{35}$.
故答案為:$\frac{9}{35}$.

點(diǎn)評(píng) 本題考查概率的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意等可能事件概率計(jì)算公式、排列組合知識(shí)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知函數(shù)$f(x)=\left\{\begin{array}{l}3-x,x<2\\{2^x}-3,x≥2\end{array}\right.$,若f(f(α))=1,則實(shí)數(shù)a的值為1,或log25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.中國(guó)有個(gè)名句“運(yùn)籌帷幄之中,決勝千里之外”,其中的“籌”原意是指《孫子算經(jīng)》中記載的算籌,古代是用算籌來(lái)進(jìn)行計(jì)算,算籌是將幾寸長(zhǎng)的小竹棍擺在平面上進(jìn)行運(yùn)算,算籌的擺放形式有縱橫兩種形式,如圖,當(dāng)表示一個(gè)多位數(shù)時(shí),像阿拉伯計(jì)數(shù)一樣,把各個(gè)數(shù)位的數(shù)碼從左到右排列,但各位數(shù)碼的籌式需要縱橫相間,個(gè)位,百位,萬(wàn)位數(shù)用縱式表示,十位,千位,十萬(wàn)位用橫式表示,以此類推.例如 6613 用算籌表示就是,則 8335 用算籌可表示為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.某位股民購(gòu)進(jìn)某只股票,在接下來(lái)的交易時(shí)間內(nèi),他的這只股票先經(jīng)歷了5次漲停(每次上漲10%),又經(jīng)歷了5次跌停(每次下跌10%),則該股民這只股票的盈虧情況(不考慮其他費(fèi)用)為(  )
A.略有盈利B.略有虧損
C.沒(méi)有盈利也沒(méi)有虧損D.無(wú)法判斷盈虧情況

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.等差數(shù)列{an}是非常數(shù)列,a4=10且a3,a6,a10成等比數(shù)列,
(1)求數(shù)列{an}的通項(xiàng)公式,
(2)若${b_n}={2^n}{a_n}$,求數(shù)列{bn}的前n項(xiàng)和sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.某中學(xué)舉行了一次“環(huán)保知識(shí)競(jìng)賽”,全校學(xué)生參加了這次競(jìng)賽,為了了解本次競(jìng)賽成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分取正整數(shù),滿分為100分)作為樣本進(jìn)行統(tǒng)計(jì),請(qǐng)根據(jù)下面尚未完成并有局部污損的頻率分布表和頻率分布直方圖(如圖所示)解決下列問(wèn)題:
 組別 分組 頻數(shù) 頻率
 第1組[50,60) 8 0.16
 第2組[60,70) a
 第3組[70,80) 20 0.40
 第4組[80,90)  0.08
 第5組[90,100) 2 b
 合計(jì)   
(1)寫(xiě)出a,b,x,y的值.
(2)在選取的樣本中,從競(jìng)賽成績(jī)是80分以上(含80分)的同學(xué)中隨機(jī)抽取2名同學(xué)到廣場(chǎng)參加環(huán)保知識(shí)的志愿宣傳活動(dòng).
①求所抽取的2名同學(xué)中至少有1名同學(xué)的成績(jī)?cè)赱90,100]內(nèi)的概率;
②求所抽取的2名同學(xué)來(lái)自同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.下列函數(shù)在定義域中既是奇函數(shù)又是增函數(shù)的是( 。
A.y=2xB.y=-x3C.$y=3{x^{\frac{1}{3}}}$D.$y=x+\frac{1}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知曲線C:$\left\{\begin{array}{l}{x=-3+4cosθ}\\{y=4+4sinθ}\end{array}\right.$(θ為參數(shù)),直線l1:kx-y+k=0,l2:cosθ-2sinθ=$\frac{4}{ρ}$
(Ⅰ)寫(xiě)出曲線C和直線l2的普通方程;
(Ⅱ)l1與C交于不同兩點(diǎn)M,N,MN的中點(diǎn)為P,l1與l2的交點(diǎn)為Q,l1恒過(guò)點(diǎn)A,求|AP|•|AQ|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.王昌齡《從軍行》中兩句詩(shī)為“黃沙百戰(zhàn)穿金甲,不破樓蘭終不還”,其中后一句“攻破樓蘭”是“返回家鄉(xiāng)”的(  )
A.充要條件B.既不充分也不必要條件
C.充分條件D.必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案