據(jù)有關(guān)資料,1995年我國工業(yè)廢棄垃圾達(dá)到7.4×108噸,占地562.4平方公里,若環(huán)保部門每年回收或處理1噸舊物資,則相當(dāng)于處理和減少4噸工業(yè)廢棄垃圾,并可節(jié)約開采各種礦石20噸,設(shè)環(huán)保部門1996年回收10萬噸廢舊物資,計劃以后每年遞增20%的回收量,試問:
(1)2001年回收廢舊物資多少噸?
(2)從1996年至2001年可節(jié)約開采礦石多少噸(精確到萬噸)?
(3)從1996年至2001年可節(jié)約多少平方公里土地?
(1) 25萬噸,(2) 1986萬噸,(3) 3 平方公里
設(shè)an表示第n年的廢舊物資回收量,Sn表示前n年廢舊物資回收總量,則數(shù)列{an}是以10為首項,1+20%為公比的等比數(shù)列.
(1)a6=10(1+20%)5=10×1.25=24.8832≈25(萬噸)
(2)S6==99.2992≈99.3(萬噸)
∴從1996年到2000年共節(jié)約開采礦石20×99 3≈1986(萬噸)
(3)由于從1996年到2001年共減少工業(yè)廢棄垃圾4×99.3=397.2(萬噸),
∴從1996年到2001年共節(jié)約:
≈3 平方公里.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

是等差數(shù)列,若,,則(    ).
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)已知函數(shù).(Ⅰ) 求f –1(x);(Ⅱ) 若數(shù)列{an}的首項為a1=1,(nÎN+),求{an}的通項公式an;(Ⅲ) 設(shè)bn=an+12+an+22+¼+a2n+12,是否存在最小的正整數(shù)k,使對于任意nÎN+bn<成立.若存在,求出k的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè){an}為等差數(shù)列,{bn}為等比數(shù)列,a1=b1=1,a2+a4=b3,b2·b4=a3,分別求出{an}及{bn}的前n項和S10T10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在直角坐標(biāo)系中,O是坐標(biāo)原點,P1(x1y1)、P2(x2,y2)是第一象限的兩個點,若1,x1,x2,4依次成等差數(shù)列,而1,y1,y2,8依次成等比數(shù)列,則△OP1P2的面積是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)數(shù)列和數(shù)列由下列條件確定:
;
②當(dāng)時,滿足如下條件:當(dāng)時,;當(dāng)時,。
解答下列問題:
(Ⅰ)證明數(shù)列是等比數(shù)列;
(Ⅱ)求數(shù)列的前n項和為;
(Ⅲ)是滿足的最大整數(shù)時,用表示n的滿足的條件。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

⑴已知為等差數(shù)列的前項和,,求
⑵若一個等差數(shù)列的前4項和為36,后4項和為124,且所有項的和為780,求這個數(shù)列的項數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列的通項公式是,求其前項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

數(shù)列中,,則的通項     .

查看答案和解析>>

同步練習(xí)冊答案