(本題滿分12分)已知函數(shù), 

(I)當(dāng)時(shí),求函數(shù)的極值;

(II)若函數(shù)在區(qū)間上是單調(diào)增函數(shù),求實(shí)數(shù)的取值范圍.

 

【答案】

(I)時(shí),取得極小值.

(II)

【解析】解:(I)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052308265404686260/SYS201205230829168750592640_DA.files/image005.png"> , 所以當(dāng)時(shí), ,

,則,所以的變化情況如下表:

0

0

+

極小值

所以時(shí),取得極小值. …………………………………6分

(II) 因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052308265404686260/SYS201205230829168750592640_DA.files/image005.png">,函數(shù)在區(qū)間上是單調(diào)增函數(shù),

所以對(duì)恒成立.又,所以只要對(duì)恒成立,   解法一:設(shè),則要使對(duì)恒成立,

只要成立,即,解得 .     

解法二:要使對(duì)恒成立,

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052308265404686260/SYS201205230829168750592640_DA.files/image025.png">,所以對(duì)恒成立 , 

因?yàn)楹瘮?shù)上單調(diào)遞減,                 

所以只要  .  

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

( 本題滿分12分 )
已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:安徽省合肥一中、六中、一六八中學(xué)2010-2011學(xué)年高二下學(xué)期期末聯(lián)考數(shù)學(xué)(理 題型:解答題

(本題滿分12分)已知△的三個(gè)內(nèi)角、、所對(duì)的邊分別為、、.,且.(1)求的大;(2)若.求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011屆本溪縣高二暑期補(bǔ)課階段考試數(shù)學(xué)卷 題型:解答題

(本題滿分12分)已知各項(xiàng)均為正數(shù)的數(shù)列,
的等比中項(xiàng)。
(1)求證:數(shù)列是等差數(shù)列;(2)若的前n項(xiàng)和為Tn,求Tn。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省揭陽市高三調(diào)研檢測(cè)數(shù)學(xué)理卷 題型:解答題

(本題滿分12分)

已知橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的倍,,是它的左,右焦點(diǎn).

(1)若,且,,求、的坐標(biāo);

(2)在(1)的條件下,過動(dòng)點(diǎn)作以為圓心、以1為半徑的圓的切線是切點(diǎn)),且使,求動(dòng)點(diǎn)的軌跡方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年遼寧省高二上學(xué)期10月月考理科數(shù)學(xué)卷 題型:解答題

(本題滿分12分)已知橢圓的長(zhǎng)軸,短軸端點(diǎn)分別是A,B,從橢圓上一點(diǎn)M向x軸作垂線,恰好通過橢圓的左焦點(diǎn),向量是共線向量

(1)求橢圓的離心率

(2)設(shè)Q是橢圓上任意一點(diǎn),分別是左右焦點(diǎn),求的取值范圍

 

查看答案和解析>>

同步練習(xí)冊(cè)答案